Fractal Analysis of Hyperbolic Saddles with Applications

Vlatko Crnković

Advisors: dr. sc. Renato Huzak (UHasselt) dr. sc. Domagoj Vlah (UniZg)

University of Zagreb Faculty of Electrical Engineering and Computing

Bifurcations of Dynamical Systems and Numerics 9 - 11 May 2023

周 ト イ ヨ ト イ ヨ

Minkowski dimension

Definition

Let $S \subset \mathbb{R}^N$ be a bounded set. For a positive real number δ , let $S_{\delta} := \{x \in \mathbb{R}^N : d(x, S) < \delta\}$, and let $|S_{\delta}|$ denote the Lebesgue measure of the set S_{δ} . If the limit

$$\lim_{\delta \to 0} N - \frac{\log |S_{\delta}|}{\log \delta}$$

exists, we say that the Minkowski dimension of S, $\dim_B S$, is equal to it.

Minkowski dimension

Definition

Let $S \subset \mathbb{R}^N$ be a bounded set. For a positive real number δ , let $S_{\delta} := \{x \in \mathbb{R}^N : d(x, S) < \delta\}$, and let $|S_{\delta}|$ denote the Lebesgue measure of the set S_{δ} . If the limit

$$\lim_{\delta \to 0} N - \frac{\log |S_{\delta}|}{\log \delta}$$

exists, we say that the Minkowski dimension of S, $\dim_B S$, is equal to it.

Remark

There are various alternative definitions/ways of computing.

Minkowski dimension

Definition

Let $S \subset \mathbb{R}^N$ be a bounded set. For a positive real number δ , let $S_{\delta} := \{x \in \mathbb{R}^N : d(x, S) < \delta\}$, and let $|S_{\delta}|$ denote the Lebesgue measure of the set S_{δ} . If the limit

$$\lim_{\delta \to 0} N - \frac{\log |S_{\delta}|}{\log \delta}$$

exists, we say that the Minkowski dimension of S, dim_BS, is equal to it.

Remark

There are various alternative definitions/ways of computing.

Remark

In general, it is not easy to explicitly express $|S_{\delta}|$.

< ロ > < 同 > < 回 > < 回 >

Minkowski dimension of convergent sequences

Example (Nucleus-Tail method)

∃ >

Minkowski dimension of convergent sequences

Example (Nucleus-Tail method)

Lemma

Let α be a positive real number. The Minkowski dimension of the sequence $\left(\frac{1}{n^{\alpha}}\right)_n$ is $\frac{1}{1+\alpha}$.

- - E + - E +

Theorem (Žubrinić, Županović)

Let's consider the normal form of the Hopf-Takens bifurcation

$$\begin{cases} \dot{r} = r(r^{2l} + \sum_{i=0}^{l-1} a_i r^{2i}) \\ \dot{\varphi} = 1 \end{cases}$$

Let Γ be a part of a trajectory of this system near the origin.

- Assume that $a_0 \neq 0$. Then the spiral Γ is of exponential type, that is, comparable with $r = e^{a_0\varphi}$ and hence $\dim_B\Gamma = 1$
- Let k be fixed, $1 \le k \le l$, $a_l = 1$ and $a_0 = ... = a_{k-1} = 0$, $a_k \ne 0$. Then Γ is comparable with the spiral $r = \varphi^{-\frac{1}{2k}}$, and

$$dim_B\Gamma = \frac{4k}{2k+1}$$

Theorem (Žubrinić, Županović)

If the system from the previous theorem has a limit cycle r = a of multiplicity $m, 1 \le m \le l$. By Γ_1 and Γ_2 we denote the parts of two trajectories of this system near the limit cycle from the outside and inside resprectively. Then the trajectories Γ_1 and Γ_2 are comparable

• with exponential spirals $r = a \pm e^{-\beta\varphi}$ of limit cycle type when m = 1, for some constant $\beta > 0$

2 with power spirals $r = a \pm \varphi^{-\frac{1}{m-1}}$ when m > 1. In both cases we have

$$dim_B\Gamma_i = 2 - \frac{1}{m}, \ i = 1, 2$$

Minkowski dimension of some discrete orbits

Theorem (Elezović, Žubrinić, Županović)

Let $\alpha > 1$ and let $f : (0, r) \to (0, +\infty)$ be a monotonically nondecreasing function such that $f(x) \simeq x^{\alpha}$ as $x \to 0$, and f(x) < x for all $x \in (0, r)$. Consider the sequence $S(x_0) := (x_n)_{n \in \mathbb{N}_0}$ defined by

$$x_{n+1} = x_n - f(x_n), \ x_0 \in (0, r).$$

Then

$$x_n \simeq n^{-\frac{1}{\alpha-1}}$$
 as $n \to \infty$.

Furthermore,

$$dim_BS(x_0) = 1 - rac{1}{lpha},$$

and the set $S(x_0)$ is Minkowski nondegenerate.

Fractal analysis of polycycles

V. Crnković Fractal Analysis of Hyperbolic Saddles with Applications

< ∃ >

• Fractal analysis near singularities

- Fractal analysis near singularities
- Fractal analysis near regular sides of the polycycle (away from the singularities)

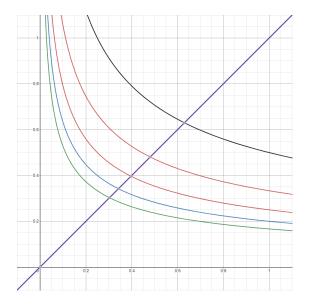
Example

Let's consider the vector field

$$\begin{cases} \dot{x} = -x \\ \dot{y} = \alpha y \end{cases}, \alpha \in (0, 1).$$

Let $(y_n)_{n \in \mathbb{N}}$ be a stricly decreasing sequence of positive real numbers that converges to 0 and let $(\Gamma_n)_{n \in \mathbb{N}}$ be the integral curves of the system above that pass through points $(1, y_n)$. We define the sequences $(x_n)_{n \in \mathbb{N}}$ and $(z_n)_{n \in \mathbb{N}}$ so that points $(x_n, 1)$ and (z_n, z_n) lie on Γ_n . What is the connection between the Minkowski dimension of the three sequences?

Fractal analysis of a hyperbolic saddle



э

Þ

Example

Let
$$y_n = \frac{1}{n}$$
. Then $x_n = \frac{1}{n^{\frac{1}{\alpha}}}$ and $z_n = \frac{1}{n^{\frac{1}{1+\alpha}}}$ and
 $\dim_B(x_n)_n < \dim_B(y_n)_n < \dim_B(z_n)_n$.

< ∃ >

э

Lemma (C., Huzak, Resman)

For $\alpha \in (0,1]$ we consider the vector field

$$\begin{cases} \dot{x} = -x \\ \dot{y} = \alpha y \end{cases}$$

Let $(y_n)_n$ be a sequence of positive real numbers that converges monotonically to 0 and such that the difference between consecutive members decrease. If the sequence $(y_n)_n$ had a defined Minkowski dimension d, then the family $(\Gamma_n)_n$ of parts of trajectories of the vector field starting at points $(1, y_n)$ and ending on $\{y = 1\}$ has Minkowski dimension 1 + d. First return map to any transversal to the saddle loop has the form

$$P(x) \simeq x^r, x \in \mathbb{R} \setminus \{1\}$$

in codimension 1 case and the form $P(x) = x + \delta(x)$ where

 $\delta(x) = \beta_1 x + \alpha_2 x^2 (-\ln x) + \beta_2 x^2 + \dots + \beta_{k-1} x^{k-1} + \alpha_k x^k (-\ln x) + O(x^k)$

in higher codimension cases.

Theorem (C., Huzak, Resman)

Consider an analytic vector field X_0 having a saddle-loop. The Minkowski dimension of spiral trajectories that have the loop as their α/ω -limit set depends only on the codimension of the saddle-loop. More precisely, if $k \ge 1$ is the codimension of the saddle loop then the Minkowski dimension of any fixed spiral trajectory S accumulating on it is

$$dim_B S = egin{cases} 2-rac{2}{k}, & k \; even, \ 2-rac{2}{k+1}, & k \; odd. \end{cases}$$

Fractal analysis of hyperbolic 2-cycles

Theorem (C., Huzak, Resman)

Let $X = X_0$ be an analytic vector field with a hyperbolic 2-cycle Γ_2 with irrational ratios of hyperbolicity r_1 and r_2 such that $r_1r_2 = 1$. Then the upper bound on the cyclicity of Γ_2 under perturbations of X can be read from the Minkowski dimension of spiral trajectories of the vector field X accumulating on Γ_2 . More precisely, if the dimension of a spiral trajectory is d < 2, then the cyclicity of Γ_2 under perturbations of X is not greater than

$$3+(1+r)\frac{d-1}{2-d}$$

where $1 > r \in \{r_1, r_2\}$.

Fractal analysis of hyperbolic 2-cycles

Theorem (C., Huzak, Resman)

Let $X = X_0$ be an analytic vector field with a hyperbolic 2-cycle Γ_2 with irrational ratios of hyperbolicity r_1 and r_2 such that $r_1r_2 = 1$. Then the upper bound on the cyclicity of Γ_2 under perturbations of X can be read from the Minkowski dimension of spiral trajectories of the vector field X accumulating on Γ_2 . More precisely, if the dimension of a spiral trajectory is d < 2, then the cyclicity of Γ_2 under perturbations of X is not greater than

$$3+(1+r)\frac{d-1}{2-d}$$

where $1 > r \in \{r_1, r_2\}$.

Remark

Spiral trajectories accumulating on "simpler" 2-cycles always have Minkowski dimension equal to 1.

Thank you!

V. Crnković Fractal Analysis of Hyperbolic Saddles with Applications

□ ▶ < E ▶ < E ▶</p>

э