
Fractal Analysis of Hyperbolic Saddles with
Applications

Vlatko Crnković

Advisors:
dr. sc. Renato Huzak (UHasselt)
dr. sc. Domagoj Vlah (UniZg)

University of Zagreb
Faculty of Electrical Engineering and Computing

Bifurcations of Dynamical Systems and Numerics
9 - 11 May 2023

V. Crnković Fractal Analysis of Hyperbolic Saddles with Applications



Minkowski dimension

Definition

Let S ⊂ RN be a bounded set. For a positive real number δ, let
Sδ := {x ∈ RN : d(x , S) < δ}, and let |Sδ| denote the Lebesgue
measure of the set Sδ. If the limit

lim
δ→0

N − log |Sδ|
log δ

exists, we say that the Minkowski dimension of S , dimBS , is equal
to it.

Remark
There are various alternative definitions/ways of computing.

Remark
In general, it is not easy to explicitly express |Sδ|.
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Minkowski dimension of convergent sequences

Example (Nucleus-Tail method)

Lemma
Let α be a positive real number. The Minkowski dimension of the
sequence

( 1
nα

)
n

is 1
1+α .
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Minkowski dimension of spiral trajectories

Theorem (Žubrinić, Županović)

Let’s consider the normal form of the Hopf-Takens bifurcation{
ṙ = r(r2l +

∑l−1
i=0 ai r

2i )

φ̇ = 1
.

Let Γ be a part of a trajectory of this system near the origin.
a Assume that a0 ̸= 0. Then the spiral Γ is of exponential type,

that is, comparable with r = ea0φ and hence dimBΓ = 1
b Let k be fixed, 1 ≤ k ≤ l , al = 1 and a0 = ... = ak−1 = 0,

ak ̸= 0. Then Γ is comparable with the spiral r = φ− 1
2k , and

dimBΓ =
4k

2k + 1
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Minkowski dimension of sprial trajectories

Theorem (Žubrinić, Županović)

If the system from the previous theorem has a limit cycle r = a of
multiplicity m, 1 ≤ m ≤ l . By Γ1 and Γ2 we denote the parts of two
trajectories of this system near the limit cycle from the outside and
inside resprectively. Then the trajectories Γ1 and Γ2 are comparable

1 with exponential spirals r = a± e−βφ of limit cycle type when
m = 1, for some constant β > 0

2 with power spirals r = a± φ− 1
m−1 when m > 1.

In both cases we have

dimBΓi = 2 − 1
m
, i = 1, 2
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Minkowski dimension of some discrete orbits

Theorem (Elezović, Žubrinić, Županović)

Let α > 1 and let f : (0, r) → (0,+∞) be a monotonically
nondecreasing function such that f (x) ≃ xα as x → 0, and
f (x) < x for all x ∈ (0, r). Consider the sequence
S(x0) := (xn)n∈N0 defined by

xn+1 = xn − f (xn), x0 ∈ (0, r).

Then
xn ≃ n−

1
α−1 as n → ∞.

Furthermore,

dimBS(x0) = 1 − 1
α
,

and the set S(x0) is Minkowski nondegenerate.
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Fractal analysis of polycycles

Fractal analysis near singularities
Fractal analysis near regular sides of the polycycle (away from
the singularities)
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Fractal analysis of a hyperbolic saddle

Example
Let’s consider the vector field{

ẋ = −x

ẏ = αy
, α ∈ (0, 1).

Let (yn)n∈N be a stricly decreasing sequence of positive real
numbers that converges to 0 and let (Γn)n∈N be the integral curves
of the system above that pass through points (1, yn). We define
the sequences (xn)n∈N and (zn)n∈N so that points (xn, 1) and
(zn, zn) lie on Γn.
What is the connection between the Minkowski dimension of the
three sequences?
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Fractal analysis of a hyperbolic saddle

Example

Let yn = 1
n . Then xn = 1

n
1
α

and zn = 1

n
1

1+α
and

dimB(xn)n < dimB(yn)n < dimB(zn)n.
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Fractal analysis of a hyperbolic saddle

Lemma (C., Huzak, Resman)

For α ∈ (0, 1] we consider the vector field{
ẋ = −x

ẏ = αy
.

Let (yn)n be a sequence of positive real numbers that converges
monotonically to 0 and such that the difference between
consecutive members decrease. If the sequence (yn)n had a defined
Minkowski dimension d , then the family (Γn)n of parts of
trajectories of the vector field starting at points (1, yn) and ending
on {y = 1} has Minkowski dimension 1 + d .
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Fractal analysis of the saddle loop

First return map to any transversal to the saddle loop has the form

P(x) ≃ x r , x ∈ R \ {1}

in codimension 1 case and the form P(x) = x + δ(x) where

δ(x) = β1x+α2x
2(− ln x)+β2x

2+...+βk−1x
k−1+αkx

k(− ln x)+O(xk)

in higher codimension cases.

V. Crnković Fractal Analysis of Hyperbolic Saddles with Applications



Theorem (C., Huzak, Resman)

Consider an analytic vector field X0 having a saddle-loop. The
Minkowski dimension of spiral trajectories that have the loop as
their α/ω-limit set depends only on the codimension of the
saddle-loop. More precisely, if k ≥ 1 is the codimension of the
saddle loop then the Minkowski dimension of any fixed spiral
trajectory S accumulating on it is

dimBS =

{
2 − 2

k , k even,
2 − 2

k+1 , k odd.
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Fractal analysis of hyperbolic 2-cycles
Theorem (C., Huzak, Resman)

Let X = X0 be an analytic vector field with a hyperbolic 2-cycle Γ2
with irrational ratios of hyperbolicity r1 and r2 such that r1r2 = 1.
Then the upper bound on the cyclicity of Γ2 under perturbations of
X can be read from the Minkowski dimension of spiral trajectories
of the vector field X accumulating on Γ2. More precisely, if the
dimension of a spiral trajectory is d < 2, then the cyclicity of Γ2
under perturbations of X is not greater than

3 + (1 + r)
d − 1
2 − d

where 1 > r ∈ {r1, r2}.

Remark
Spiral trajectories accumulating on "simpler" 2-cycles always have
Minkowski dimension equal to 1.
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Thank you!
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