Iterated Fractal Drums ~ Some New Perspectives:

Polyhedral Measures, Atomic Decompositions

Joint work with Michel L. Lapidus

Claire David

Sorbonne Université - Laboratoire Jacques-Louis Lions

2 Geometric Framework

3 Polyhedral Measure

4 Atomic Decompositions – Trace Theorems, and Consequences

5 The Polyhedral Measure In Real Life

Introduction

A pathological object

Continuous everywhere, while being nowhere differentiable¹,¹¹.

^IKarl Weierstrass. "Über continuirliche Funktionen eines reellen Arguments, die für keinen Werth des letzteren einen bestimmten Differential quotienten besitzen". In: *Journal für die reine und angewandte Mathematik* 79 (1875), pp. 29–31.

^{II}Godfrey Harold Hardy. "Weierstrass's Non-Differentiable Function". In: *Transactions of the American Mathematical Society* 17.3 (1916), pp. 301–325.

Minkowski Dimension^{III}, ^{IV}, ^V, ^{VI}:

$$D_{\mathcal{W}} = 2 + \frac{\ln \lambda}{\ln b} = 2 - \ln_b \frac{1}{\lambda}$$

^{IV}Feliks Przytycki and Mariusz Urbański. "On the Hausdorff dimension of some fractal sets". In: *Studia Mathematica* 93.2 (1989), pp. 155–186.

^VTian-You Hu and Ka-Sing Lau. "Fractal Dimensions and Singularities of the Weierstrass Type Functions". In: *Transactions of the American Mathematical Society* 335.2 (1993), pp. 649–665.

^{VI}Claire David. "Bypassing dynamical systems: A simple way to get the box-counting dimension of the graph of the Weierstrass function". In: *Proceedings of the International Geometry Center* 11.2 (2018), pp. 1–16. URL:

https://journals.onaft.edu.ua/index.php/geometry/article/view/1028.

^{III}James L. Kaplan, John Mallet-Paret, and James A. Yorke. "The Lyapunov dimension of a nowhere differentiable attracting torus". In: *Ergodic Theory and Dynamical Systems* 4 (1984), pp. 261–281.

Our question:

Can we find

A suitable measure?

I. The Geometric Framework

We hereafter place ourselves in the Euclidean plane of dimension 2, referred to a direct orthonormal frame. The usual Cartesian coordinates are (x, y). The horizontal and vertical axes will be respectively referred to as (x'x) and (y'y).

Notation

In the following, λ and N_b are two real numbers such that:

$$0 < \lambda < 1$$
 , $N_b \in \mathbb{N}^*$ and $\lambda N_b > 1$.

We consider the Weierstrass function \mathcal{W} , defined, for any real number x, by

$$\mathscr{W}(x) = \sum_{n=0}^{+\infty} \lambda^n \cos\left(2\pi N_b^n x\right) \cdot$$

Associated graph: the Weierstrass Curve.

Due to the one-periodicity of the ${\mathscr W}$ function, we restrict our study to the interval [0,1[.

Minkowski (or box-counting) Dimension

 $D_{\mathscr{W}} = 2 + \frac{\ln \lambda}{\ln N_b}$, equal to its Hausdorff dimension $\bigvee_{i,j} \bigvee_{i,j} X$

^{VIII}Krzysztof Barańsky, Balázs Bárány, and Julia Romanowska. "On the dimension of the graph of the classical Weierstrass function". In: *Advances in Mathematics* 265 (2014), pp. 791–800.

^{IX}Weixiao Shen. "Hausdorff dimension of the graphs of the classical Weierstrass functions". In: *Mathematische Zeitschrift* 289 (1-2 2018), pp. 223–266.

VII James L. Kaplan, John Mallet-Paret, and James A. Yorke. "The Lyapunov dimension of a nowhere differentiable attracting torus". In: *Ergodic Theory and Dynamical Systems* 4 (1984), pp. 261–281.

^XGerhard Keller. "A simpler proof for the dimension of the graph of the classical Weierstrass function". In: *Annales de l'Institut Henri Poincaré – Probabilités et Statistiques* 53.1 (2017), pp. 169–181.

The Weierstrass Curve as a Cyclic Curve

In the sequel, we identify the points

$$(0,\mathscr{W}(0))$$
 and $(1,\mathscr{W}(1)) = (1,\mathscr{W}(0))$.

Remark

The above convention makes sense, in so far as the points $(0, \mathcal{W}(0))$ and $(1, \mathcal{W}(1))$ have the same vertical coordinate, in addition to the periodic properties of the \mathcal{W} function.

Property (Symmetry with respect to the vertical line $x = \frac{1}{2}$)

Since, for any $x \in [0, 1]$:

$$\mathscr{W}(1-x) = \sum_{n=0}^{+\infty} \lambda^n \cos\left(2\pi N_b^n - 2\pi N_b^n x\right) = \mathscr{W}(x)$$

the Weierstrass Curve is symmetric with respect to the vertical straight line $x = \frac{1}{2}$.

Proposition (Nonlinear and Noncontractive Iterated Function System (IFS))

We approximate the restriction $\Gamma_{\mathscr{W}}$ to $[0, 1[\times\mathbb{R}, of the Weierstrass Curve, by a sequence of finite graphs, built through an iterative process, by using$ **thenonlinear iterated function system**(*IFS* $) of the family of <math>C^{\infty}$ maps from \mathbb{R}^2 to \mathbb{R}^2 denoted by

$$\mathcal{T}_{\mathcal{W}} = \left\{ T_0, \cdots, T_{N_b-1} \right\} \,,$$

where, for $0 \le i \le N_b - 1$ and any point (x, y) of \mathbb{R}^2 ,

$$T_i(x, y) = \left(\frac{x+i}{N_b}, \lambda y + \cos\left(2\pi \left(\frac{x+i}{N_b}\right)\right)\right) \cdot$$

Property (Attractor of the IFS)

The Weierstrass Curve is the attractor of the IFS $\mathscr{T}_{\mathscr{W}}$: $\Gamma_{\mathscr{W}} = \bigcup_{i=1}^{N_b-1} T_i(\Gamma_{\mathscr{W}}).$

Fixed Points

For any integer i belonging to $\{0, \dots, N_b - 1\}$, we denote by:

$$P_i = (x_i, y_i) = \left(\frac{i}{N_b - 1}, \frac{1}{1 - \lambda} \cos\left(\frac{2\pi i}{N_b - 1}\right)\right)$$

the fixed point of the map T_i .

Sets of vertices, Prefractals

We set: $V_0 = \{P_0, \dots, P_{N_b-1}\}$, and, for any $m \in \mathbb{N}^*$: $V_m = \bigcup_{i=0}^{N_b-1} T_i(V_{m-1})$.

For $m \in \mathbb{N}$, the set of points V_m , where two consecutive points are linked, is an oriented graph (according to increasing abscissa): the m^{th} -order \mathscr{W} -prefractal $\Gamma_{\mathscr{W}_m}$.

16 / 91

The Weierstrass IFD

We call Weierstrass Iterated Fractal Drums (IFD) the sequence of prefractal graphs which converge to the Weierstrass Curve.

Adjacent Vertices, Edge Relation

For any natural integer m, the prefractal graph $\Gamma_{\mathscr{W}_m}$ is equipped with an edge relation $\underset{m}{\sim}$: two vertices X and Y of $\Gamma_{\mathscr{W}_m}$, i.e. two points belonging to V_m , will be said to be **adjacent** (i.e., neighboring or junction points) if and only if the line segment [X, Y] is an edge of $\Gamma_{\mathscr{W}_m}$; we then write $X \underset{m}{\sim} Y$. This edge relation **depends on** m, which means that points adjacent in V_m might not remain adjacent in V_{m+1} .

Property

For any natural integer m, we have that

i.
$$V_m \subset V_{m+1}$$
.
ii. $\#V_m = (N_b - 1) N_b^m + 1$.

- iii. The prefractal graph $\Gamma_{\mathscr{W}_m}$ has exactly $(N_b 1) N_b^m$ edges.
- iv. The consecutive vertices of the prefractal graph $\Gamma_{\mathscr{W}_m}$ are the vertices of N_b^m simple polygons $\mathscr{P}_{m,k}$ with N_b sides. For $m \in \mathbb{N}$, the junction point between two consecutive polygons is the point

$$\left(\frac{\left(N_{b}-1\right)k}{\left(N_{b}-1\right)N_{b}^{m}}, \mathcal{W}\left(-\frac{\left(N_{b}-1\right)k}{\left(N_{b}-1\right)N_{b}^{m}}\right)\right) \quad , \quad 1 \le k \le N_{b}^{m}-1$$

The total number of junction points is thus $N_b^m - 1$.

For instance, in the case $N_b = 3$, one gets triangles.

In the sequel, we will denote by \mathcal{P}_0 the initial polygon, i.e. the one whose vertices are the fixed points of the maps T_i , $0 \le i \le N_b - 1$.

The polygons, in the case where $\lambda = \frac{1}{2}$, and $N_b = 7$.

m = 0

m = 1

The prefractal graphs $\Gamma_{\mathscr{W}_0}$, $\Gamma_{\mathscr{W}_1}$, $\Gamma_{\mathscr{W}_2}$, $\Gamma_{\mathscr{W}_3}$, in the case where $\lambda = \frac{1}{2}$, and $N_b = 3$.

Vertices of the Prefractals, Elementary Lengths, and Heights

Given $m \in \mathbb{N}$, we denote by $(M_{j,m})_{0 \le j \le (N_b-1)} N_b^{m-1}$ the set of vertices of the prefractal graph $\Gamma_{\mathscr{W}_m}$. One thus has, for any integer j in $\{0, \cdots, (N_b-1), N_b^m-1\}$:

$$M_{j,m} = \left(\frac{j}{\left(N_{b}-1\right)N_{b}^{m}}, \mathcal{W}\left(\frac{j}{\left(N_{b}-1\right)N_{b}^{m}}\right)\right)$$

We also introduce, for $0 \le j \le (N_b - 1) N_b^m - 2$:

i. the elementary horizontal lengths:

ii. the elementary lengths:

$$\ell_{j,j+1,m} = d\left(M_{j,m}, M_{j+1,m}\right) = \sqrt{L_m^2 + h_{j,j+1,m}^2}$$

iii. the elementary heights:

$$h_{j,j+1,m} = \left| \mathcal{W}\left(\frac{j+1}{(N_b-1) N_b^m} \right) - \mathcal{W}\left(\frac{j}{(N_b-1) N_b^m} \right) \right|$$

iv. the geometric angles:

$$\theta_{j-1,j,m} = \left((y'y), \left(\widehat{M_{j-1,m}} M_{j,m} \right) \right) \quad , \quad \theta_{j,j+1,m} = \left((y'y), \left(\widehat{M_{j,m}} M_{j+1,m} \right) \right),$$

which yield the value of the geometric angle between consecutive edges $[M_{j-1,m} M_{j,m}, M_{j,m} M_{j+1,m}]$:

$$\theta_{j-1,j,m} + \theta_{j,j+1,m} = \arctan \frac{L_m}{|h_{j-1,j,m}|} + \arctan \frac{L_m}{|h_{j,j+1,m}|} \cdot$$

Property (Scaling Properties of the Weierstrass Function, and Consequences)

Since, for any real number x

$$\mathscr{W}(x) = \sum_{n=0}^{+\infty} \lambda^n \cos\left(2\pi N_b^n x\right)$$

one also has

$$\mathcal{W}(N_b x) = \sum_{n=0}^{+\infty} \lambda^n \cos\left(2\pi N_b^{n+1} x\right) = \frac{1}{\lambda} \sum_{n=1}^{+\infty} \lambda^n \cos\left(2\pi N_b^n x\right) = \frac{1}{\lambda} \left\{\mathcal{W}(x) - \cos\left(2\pi x\right)\right\}$$

which yield, for any strictly positive integer m, and any j in $\{0, \dots, \#V_m\}$:

$$\mathscr{W}\left(\frac{j}{\left(N_{b}-1\right)N_{b}^{m}}\right) = \lambda \,\mathscr{W}\left(\frac{j}{\left(N_{b}-1\right)N_{b}^{m-1}}\right) + \cos\left(\frac{2\pi j}{\left(N_{b}-1\right)N_{b}^{m-1}}\right)$$

By induction, one obtains that

$$\mathscr{W}\left(\frac{j}{(N_b-1) N_b^m}\right) = \lambda^m \,\mathscr{W}\left(\frac{j}{(N_b-1)}\right) + \sum_{k=0}^{m-1} \lambda^k \,\cos\left(\frac{2 \pi N_b^k j}{(N_b-1) N_b^m}\right) \,\cdot$$

A Consequence of the Symmetry with respect to the Vertical Line $x = \frac{1}{2}$

For any strictly positive integer m and any j in $\{0, \dots, \#V_m\}$, we have that

$$\mathscr{W}\left(\frac{j}{\left(N_{b}-1\right)N_{b}^{m}}\right) = \mathscr{W}\left(\frac{\left(N_{b}-1\right)N_{b}^{m}-j}{\left(N_{b}-1\right)N_{b}^{m}}\right)$$

which means that the points

$$\left(\frac{(N_b-1)N_b^m-j}{(N_b-1)N_b^m}, \mathscr{W}\left(\frac{(N_b-1)N_b^m-j}{(N_b-1)N_b^m}\right)\right) \quad \text{and} \quad \left(\frac{j}{(N_b-1)N_b^m}, \mathscr{W}\left(\frac{j}{(N_b-1)N_b^m}\right)\right)$$

are symmetric with respect to the vertical line $x = \frac{1}{2}$.

Property

Property

Given a strictly positive integer m:

i. For any *j* in $\{0, \dots, \#V_m\}$, the point

$$\left(\frac{j}{\left(N_{b}-1\right)N_{b}^{m}},\mathscr{W}\left(\frac{j}{\left(N_{b}-1\right)N_{b}^{m}}\right)\right)$$

is the image of the point

$$\left(\frac{j}{(N_b-1)N_b^{m-1}}-i, \mathcal{W}\left(\frac{j}{(N_b-1)N_b^{m-1}}-i\right)\right) = \left(\frac{j-i(N_b-1)N_b^{m-1}}{(N_b-1)N_b^{m-1}}, \mathcal{W}\left(\frac{j-i(N_b-1)N_b^{m-1}}{(N_b-1)N_b^{m-1}}\right)\right)$$

by the map T_i , $0 \le i \le N_b - 1$.

As a consequence, the j^{th} vertex of the polygon $\mathcal{P}_{m,k}$, $0 \le k \le N_b^m - 1$, $0 \le j \le N_b - 1$, i.e. the point:

$$\left(\frac{\left(N_{b}-1\right)k+j}{\left(N_{b}-1\right)N_{b}^{m}},\mathscr{W}\left(\frac{\left(N_{b}-1\right)k+j}{\left(N_{b}-1\right)N_{b}^{m}}\right)\right)$$

is the image of the point

$$\left(\frac{(N_{b}-1)\left(k-i\left(N_{b}-1\right)N_{b}^{m-1}\right)+j}{(N_{b}-1)N_{b}^{m-1}},\mathscr{W}\left(\frac{(N_{b}-1)\left(k-i\left(N_{b}-1\right)N_{b}^{m-1}\right)+j}{(N_{b}-1)N_{b}^{m-1}}\right)\right)$$

i.e. is the **the** j^{th} vertex of the polygon $\mathscr{P}_{m-1,k-i(N_b-1)N_b^{m-1}}$. There is thus an exact correspondence between vertices of the polygons at consecutive steps m-1, m.

$$\begin{array}{l} \text{ii. Given } j \text{ in } \{0, \cdots, N_b - 2\}, \text{ and } k \text{ in } \{0, \cdots, N_b^m - 1\}:\\ \\ \text{sign}\left(\mathscr{W}\left(\frac{k\left(N_b - 1\right) + j + 1}{\left(N_b - 1\right) N_b^m}\right) - \mathscr{W}\left(\frac{k\left(N_b - 1\right) + j}{\left(N_b - 1\right) N_b^m}\right)\right) = \text{sign}\left(\mathscr{W}\left(\frac{j + 1}{N_b - 1}\right) - \mathscr{W}\left(\frac{j}{N_b - 1}\right)\right). \end{aligned}$$

Bounding Result: Upper and Lower Bounds for the Elementary Heights

For any strictly positive integer *m*, and any *j* in $\{0, \dots, (N_b - 1) N_b^m\}$, we have that

where

$$C_{inf} = (N_b - 1)^{2 - D_{\mathscr{W}}} \min_{0 \le j \le N_b - 1} \left| \mathscr{W} \left(\frac{j+1}{N_b - 1} \right) - \mathscr{W} \left(\frac{j}{N_b - 1} \right) \right|$$

and

$$C_{sup} = \left(N_b - 1\right)^{2-D_{\mathscr{W}}} \left(\max_{0 \le j \le N_b - 1} \left| \mathscr{W}\left(\frac{j+1}{N_b - 1}\right) - \mathscr{W}\left(\frac{j}{N_b - 1}\right) \right| + \frac{2\pi}{\left(N_b - 1\right)\left(\lambda N_b - 1\right)} \right).$$

These constants depend on the initial polygon \mathcal{P}_0 .

Theorem: Sharp Local Discrete Reverse Hölder Properties of the Weierstrass Function

For any natural integer m, and any pair of real numbers (x, x') such that:

$$x = \frac{(N_b - 1)k + j}{(N_b - 1)N_b^m} = ((N_b - 1)k + j)L_m \quad , \quad x' = \frac{(N_b - 1)k + j + \ell}{(N_b - 1)N_b^m} = ((N_b - 1)k + j + \ell)L_m$$

where $0 \le k \le N_b - 1^m - 1$, and

i. if the integer N_b is odd,

$$\label{eq:relation} \begin{split} & 0 \leq j < \frac{N_b - 1}{2} \quad \text{and} \quad 0 < j + \ell \leq \frac{N_b - 1}{2} \\ & \text{or} \quad \frac{N_b - 1}{2} \leq j < N_b - 1 \quad \text{and} \quad \frac{N_b - 1}{2} < j + \ell \leq N_b - 1 \,; \end{split}$$

ii. if the integer N_b is even,

$$0 \le j < \frac{N_b}{2} \quad \text{and} \quad 0 < j + \ell \le \frac{N_b}{2}$$

or
$$\frac{N_b}{2} + 1 \le j < N_b - 1 \quad \text{and} \quad \frac{N_b}{2} + 1 < j + \ell \le N_b - 1$$

This means that the points $(x, \mathcal{W}(x))$ and $(x', \mathcal{W}(x'))$ are vertices of the polygon gon $\mathscr{P}_{m,k}$ both located on the left-side of the polygon, or on the right-side. Then, one has the following *reverse-Hölder inequality*, with sharp Hölder exponent $-\frac{\ln \lambda}{\ln N_b} = 2 - D_{\mathcal{W}}$,

$$C_{inf} |x'-x|^{2-D_{\mathcal{W}}} \leq |\mathcal{W}(x')-\mathcal{W}(x)| \cdot$$

Corollary

One may now write, for any $m \in \mathbb{N}^*$, and $0 \le j \le (N_b - 1) N_b^m - 1$:

i. for the elementary heights:

$$h_{j-1,j,m} = L_m^{2-D_{\mathcal{W}}} \mathcal{O}(1)$$

ii. for the elementary quotients:

$$\frac{h_{j-1,j,m}}{L_m} = L_m^{1-D_{\mathscr{W}}} \mathscr{O}(1)$$

where:

$$0 < C_{inf} \leq \mathcal{O}(1) \leq C_{sup} < \infty$$

II. Polyhedral Measure

*m*th Cohomology Infinitesimal

Given any $m \in \mathbb{N}$, we will call m^{th} cohomology infinitesimal the number

$$\varepsilon_m^m = \frac{1}{N_b - 1} \frac{1}{N_b^m} \xrightarrow[m \to \infty]{} 0 \cdot$$

Note that this m^{th} cohomology infinitesimal is the one naturally associated to the scaling relation of \mathcal{W} .

Polygonal Sets

For any $m \in \mathbb{N}$, the consecutive vertices of the prefractal graph $\Gamma_{\mathscr{W}_m}$ are the vertices of N_b^m simple polygons $\mathscr{P}_{m,k}$ with N_b sides.

We now introduce the polygonal sets

Notation

For any $m \in \mathbb{N}$, we denote by:

- ii. $X \in \mathcal{P}_m$ (resp., $X \in \mathcal{Q}_m$) a vertex of a polygon $\mathcal{P}_{m,k}$, with $0 \le k \le N_b^m - 1$ (resp., a vertex of a polygon $\mathcal{Q}_{m,k}$, with $1 \le k \le N_b^m - 2$).
- ii. $\mathscr{P}_m \bigcup \mathscr{Q}_m$ the reunion of the polygonal sets \mathscr{P}_m and \mathscr{Q}_m , which consists in the set of all the vertices of the polygons $\mathscr{P}_{m,k}$, with $0 \le k \le N_b^m 1$, along with the vertices of the polygons $\mathscr{Q}_{m,k}$, with $1 \le k \le N_b^m 2$. In particular, $X \in \mathscr{P}_m \bigcup \mathscr{Q}_m$ simply denotes a vertex in \mathscr{P}_m or \mathscr{Q}_m .
- iii. $\mathscr{P}_m \bigcap \mathscr{Q}_m$ the intersection of the polygonal sets \mathscr{P}_m and \mathscr{Q}_m , which consists in the set of all the vertices of both a polygon $\mathscr{P}_{m,k}$, with $0 \le k \le N_b^m 1$, and a polygon $\mathscr{Q}_{m,k'}$, with $1 \le' k \le N_b^m 2$.

Power of a Vertex

Given $m \in \mathbb{N}^*$, a vertex X of $\Gamma_{\mathscr{W}_m}$ is said:

- *i.* of power one relative to the polygonal family \mathscr{P}_m if X belongs to (or is a vertex of) one and only one N_b -gon $\mathscr{P}_{m,j}$, for $0 \le j \le N_b^m 1$;
- ii. of power $\frac{1}{2}$ relative to the polygonal family \mathscr{P}_m if X is a common vertex to two consecutive N_b -gons $\mathscr{P}_{m,j}$ and $\mathscr{P}_{m,j+1}$, for $0 \le j \le N_b^m 2$;
- iii. of power zero reative to the polygonal family \mathscr{P}_m if X does not belong to (or is not a vertex of) any N_b -gon $\mathscr{P}_{m,j}$, for $0 \le j \le N_b^m 1$.

Similarly, given $m \in \mathbb{N}$, a vertex X of $\Gamma_{\mathscr{W}_m}$ is said:

- *i.* of power one relative to the polygonal family \mathscr{Q}_m if X belongs to (or is a vertex of) one and only one N_b -gon $\mathscr{P}_{m,j}$, for $0 \le j \le N_b^m 2$;
- *ii.* of power $\frac{1}{2}$ relative to the polygonal family \mathscr{P}_m if X is a common vertex to two consecutive N_b -gons $\mathscr{Q}_{m,j}$ and $\mathscr{Q}_{m,j+1}$, for $0 \le j \le N_b^m 3$;
- iii. of power zero reative to the polygonal family \mathscr{P}_m if X does not belong to (or is not a vertex of) any N_b -gon $\mathscr{Q}_{m,j}$, for $0 \le j \le N_b^m 2$.

Sequence of Domains Delimited by the *W* IFD

We introduce the sequence of domains delimited by the Weierstrass IFD as the sequence $(\mathscr{D}(\Gamma_{\mathscr{W}_m}))_{m\in\mathbb{N}}$ of open, connected polygonal sets $(\mathscr{P}_m \cup \mathscr{Q}_m)_{m\in\mathbb{N}}$, where, for each $m \in \mathbb{N}$, \mathscr{P}_m and \mathscr{Q}_m respectively denote the polygonal sets introduced just above.

Domain Delimited by the Weierstrass IFD

We call *domain, delimited by the Weierstrass IFD*, the set, which is equal to the following limit,

$$\mathscr{D}(\Gamma_{\mathscr{W}}) = \lim_{m \to \infty} \mathscr{D}(\Gamma_{\mathscr{W}_m}),$$

where the convergence is interpreted in the sense of the Hausdorff metric on \mathbb{R}^2 . In fact, we have that

$$\mathscr{D}(\Gamma_{\mathscr{W}}) = \Gamma_{\mathscr{W}} \cdot$$

Notation (Lebesgue Measure (on \mathbb{R}^2))

In the sequel, we denote by $\mu_{\mathscr{L}}$ the Lebesgue measure on \mathbb{R}^2 .

Notation

For any $m \in \mathbb{N}$, and any vertex X of V_m , we set:

$$\mu^{\mathscr{L}}(X,\mathscr{P}_{m},\mathscr{Q}_{m}) = \begin{cases} \frac{1}{N_{b}} p(X,\mathscr{P}_{m}) \sum_{\substack{0 \leq j \leq N_{b}^{m}-1, X \text{ vertex of } \mathscr{P}_{m,j}} \mu_{\mathscr{L}}(\mathscr{P}_{m,j}), \text{ if } X \notin \mathscr{Q}_{m}, \\ \frac{1}{N_{b}} p(X,\mathscr{Q}_{m}) \sum_{\substack{1 \leq j \leq N_{b}^{m}-2, X \text{ vertex of } \mathscr{P}_{m,j}} \mu_{\mathscr{L}}(\mathscr{Q}_{m,j}), \text{ if } X \notin \mathscr{P}_{m}, \\ \frac{1}{2N_{b}} \begin{cases} p(X,\mathscr{P}_{m}) \sum_{\substack{1 \leq j \leq N_{b}^{m}-1, \\ X \text{ vertex of } \mathscr{P}_{m,j}} \mu_{\mathscr{L}}(\mathscr{P}_{m,j}) + p(X,\mathscr{Q}_{m}) \sum_{\substack{1 \leq j \leq N_{b}^{m}-2, \\ X \text{ vertex of } \mathscr{P}_{m,j}} \mu_{\mathscr{L}}(\mathscr{P}_{m,j}) + p(X,\mathscr{Q}_{m}) \sum_{\substack{1 \leq j \leq N_{b}^{m}-2, \\ X \text{ vertex of } \mathscr{P}_{m,j}} \mu_{\mathscr{L}}(\mathscr{Q}_{m,j}) \end{cases}$$

Property

We set

$$m_{\mathscr{W}} = \min_{t \in [0,1]} \mathscr{W}(t) \quad , \quad M_{\mathscr{W}} = \max_{t \in [0,1]} \mathscr{W}(t) \cdot$$

Given a continuous function u on $[0,1] \times [m_{\mathscr{W}}, M_{\mathscr{W}}]$, we have that, for any $m \in \mathbb{N}$, and any vertex X of V_m :

$$\left|\mu^{\mathcal{L}}\left(X,\mathcal{P}_{m},\mathcal{Q}_{m}\right)\,u\left(X\right)\right|\leq\mu^{\mathcal{L}}\left(X,\mathcal{P}_{m},\mathcal{Q}_{m}\right)\left(\max_{\left[0,1\right]\times\left[m_{\mathcal{W}},M_{\mathcal{W}}\right]}\left|u\right|\right)\lesssim N_{b}^{-\left(3-D_{\mathcal{W}}\right)\,m}\cdot$$

Consequently, we have that

$$\varepsilon_{m}^{m(\mathcal{D}_{\mathscr{W}}-2)} \left| \mu^{\mathscr{L}}(X, \mathscr{P}_{m}, \mathscr{Q}_{m}) u(X) \right| \leq \varepsilon_{m}^{-m} \cdot$$

Since the sequence $\left(\sum_{X \in \mathscr{P}_{m} \bigcup \mathscr{Q}_{m}} \varepsilon_{m}^{-m} \right)_{m \in \mathbb{N}}$ is a positive and increasing sequence

(the number of vertices involved increases as m increases), this ensures the existence of the finite limit

$$\lim_{m\to\infty}\varepsilon_m^{m(D_{\mathscr{W}}-2)}\sum_{X\,\in\,\mathscr{P}_m\,\bigcup\,\mathscr{Q}_m}\mu^{\mathscr{L}}(X,\mathscr{P}_m,\mathscr{Q}_m)\,u(X)\,\cdot$$

Proof

For any $m \in \mathbb{N}$, and any vertex X of V_m , we have that

$$\mu^{\mathscr{L}}(X,\mathscr{P}_m,\mathscr{Q}_m)\lesssim \varepsilon_m^{m(D_{\mathscr{W}}-3)}\quad\text{and}\quad \mu^{\mathscr{L}}(X,\mathscr{P}_m,\mathscr{Q}_m)\lesssim \varepsilon_m^{m(D_{\mathscr{W}}-3)}\cdot$$

The total number of polygons \mathscr{P}_m is N_b^m , while the total number of polygons \mathscr{Q}_m is equal to $N_b^m - 1$. We then have that

$$\sum_{X \in \mathscr{P}_m \bigcup \mathscr{Q}_m} \mu^{\mathscr{L}}(X, \mathscr{P}_m, \mathscr{Q}_m) \lesssim \varepsilon_m^{m(2-D_{\mathscr{W}})},$$

which, as desired, ensures the existence of the finite limit

$$\left(\max_{[0,1]\times[m_{\mathcal{W}},M_{\mathcal{W}}]}|u|\right)\lim_{m\to\infty}\varepsilon_m^{m(D_{\mathcal{W}}-2)}\sum_{X\in\mathscr{P}_m\bigcup\mathscr{Q}_m}\mu^{\mathscr{L}}(X,\mathscr{P}_m,\mathscr{Q}_m)\cdot$$

Polyhedral Measure on the Weierstrass IFD

We introduce **the polyhedral measure** on the Weierstrass IFD, denoted by μ , such that for any continuous function u on the Weierstrass Curve,

$$\int_{\Gamma_{\mathscr{W}}} u \, d\mu = \lim_{m \to \infty} \varepsilon_m^{m(D_{\mathscr{W}}-2)} \sum_{X \in \mathscr{P}_m \mid \mathcal{Q}_m} \mu^{\mathscr{L}}(X, \mathscr{P}_m, \mathcal{Q}_m) u(X) , \quad (\star)$$

which can also be understood in the following way,

$$\int_{\Gamma_{\mathcal{W}}} u \, d\mu = \int_{\mathscr{D}(\Gamma_{\mathcal{W}})} u \, d\mu \, \cdot$$

Theorem - I

The polyhedral measure μ is well defined, positive, as well as a bounded, nonzero, Borel measure on $\mathcal{D}(\Gamma_{\mathscr{W}})$. The associated total mass is given by

$$\mu(\mathscr{D}(\Gamma_{\mathscr{W}})) = \lim_{m \to \infty} \varepsilon_m^{m(\mathcal{D}_{\mathscr{W}}-2)} \sum_{X \in \mathscr{P}_m \bigcup \mathscr{Q}_m} \mu^{\mathscr{L}}(X, \mathscr{P}_m, \mathscr{Q}_m) , \quad (\star \star)$$

and satisfies the following estimate:

$$\mu\left(\mathcal{D}\left(\Gamma_{\mathcal{W}}\right)\right) \leq \frac{2}{N_{b}}\left(N_{b}-1\right)^{2}C_{sup}\cdot \quad (\star\star\star)$$

Furthermore, the support of μ coincides with the entire curve:

$$\operatorname{supp} \mu = \mathscr{D}(\Gamma_{\mathscr{W}}) = \Gamma_{\mathscr{W}} \cdot$$

Theorem - II

In addition, μ is the weak limit as $m \to \infty$ of the following discrete measures (or Dirac Combs), given, for each $m \in \mathbb{N}$, by

$$\mu_m = \varepsilon_m^{m(D_{\mathcal{W}}-2)} \sum_{X \in \mathcal{P}_m \bigcup \mathcal{Q}_m} \mu^{\mathcal{L}}(X, \mathcal{P}_m, \mathcal{Q}_m) \, \delta_X \,,$$

where ε denotes the cohomology infinitesimal, and δ_X the Dirac measure concentrated at X.

Proof ~ *i*. μ is a well defined measure.

Indeed, the map φ

$$u\mapsto \varphi(u)=\int_{\Gamma_{\mathscr{W}}} u\,d\mu$$

is a well defined linear functional on the space $C(\Gamma_{\mathscr{W}})$ of real-valued, continuous functions on $\Gamma_{\mathscr{W}}$. Hence, by a well-known argument, it is a continuous linear functional on $C(\Gamma_{\mathscr{W}})$, equipped with the *sup* norm. Since $\Gamma_{\mathscr{W}}$ is compact, and in light of its definition, μ is a bounded, Radon measure, with total mass $\varphi(1) = \mu(\mathscr{D}(\Gamma_{\mathscr{W}}))$, also given by $(\star\star)$, and where 1 denotes the constant function equal to 1 on $\Gamma_{\mathscr{W}}$. Then, according to the Riesz representation theorem, the associated positive Borel measure (still denoted by μ) is a bounded and positive Borel measure with the same total mass $\mu(\mathscr{D}(\Gamma_{\mathscr{W}})) = \mu(\Gamma_{\mathscr{W}})$.

Proof ~ *ii*. The nonzero measure – Estimates for the total mass of μ

For $0 \le j \le N_b^m - 1$, each polygon $\mathscr{P}_{m,j}$ is contained in a rectangle of height at most equal to $(N_b - 1) h_m$, and of width at most equal to $(N_b - 1) L_m$. This ensures that the Lebesgue measure of each polygon $\mathscr{P}_{m,j}$ is at most equal to $(N_b - 1)^2 h_m L_m$. We also have the following estimate

$$h_m \le C_{sup} L_m^{2-D_{\mathcal{W}}} ,$$

where

$$C_{sup} = \left(N_b - 1\right)^{2-D_{\mathcal{W}}} \left(\max_{0 \le j \le N_b - 1} \left| \mathcal{W}\left(\frac{j+1}{N_b - 1}\right) - \mathcal{W}\left(\frac{j}{N_b - 1}\right) \right| + \frac{2\pi}{\left(N_b - 1\right)\left(\lambda N_b - 1\right)} \right).$$

Consequently:

$$\mu_{\mathcal{L}}\left(\mathcal{P}_{m,j}\right) \leq \left(N_b - 1\right)^2 C_{sup} \, L_m^{3-D_{\mathcal{W}}} \quad , \quad \mu_{\mathcal{L}}\left(\mathcal{Q}_{m,j}\right) \leq \left(N_b - 1\right)^2 C_{sup} \, L_m^{3-D_{\mathcal{W}}}$$

We then deduce that, for any vertex X of V_m ,

$$\mu\left(X,\mathscr{P}_{m},\mathscr{Q}_{m}\right) \leq \frac{1}{N_{b}}\left(N_{b}-1\right)^{2}C_{sup}\,L_{m}^{3-D_{\mathcal{W}}}\cdot$$

Hence, since the total number of polygons involved is at most equal to $2N_b^m - 1 \le 2N_b^m$, we can deduce that

$$\sum_{X \in \mathcal{P}_m \bigcup \mathcal{Q}_m} \mu^{\mathcal{L}}(X, \mathcal{P}_m, \mathcal{Q}_m) \leq 2 \frac{\varepsilon_m^{-m}}{N_b} \left(N_b - 1\right)^2 C_{sup} \varepsilon_m^{m(3 - D_{\mathcal{W}})}.$$

We then have that

$$\varepsilon_m^{m(D_{\mathcal{W}}-2)} \sum_{X \in \mathcal{P}_m \bigcup \mathcal{Q}_m} \mu^{\mathcal{L}}(X, \mathcal{P}_m, \mathcal{Q}_m) \leq \frac{2}{N_b} \left(N_b - 1\right)^2 C_{sup} < \infty \,,$$

from which we can deduce that the polyhedral measure is a bounded measure.

Polyhedral Measure

For the sake of simplicity, we restrict ourselves to the case when $N_b < 7$. For $0 \le j \le N_b^m - 1$, each polygon $\mathscr{P}_{m,j}$ (which is convex) contains an inscribed circle, whose Lebesgue measure is greater than $\frac{h_m^{inf} \varepsilon_m^m}{C_{N_L}}$, where $h_m^{inf} = \inf_{0 \le i \le (N_b - 1) N_b^m - 1} h_{j,j+1,m}$ and where $C_{N_b} > 0$. $h_{i,i+1,m}$ We recall that ϵ_m^m M_{i+1,m} $C_{inf} \varepsilon_m^{m(2-D_{\mathcal{W}})} \leq h_m^{inf}$, where $C_{inf} = (N_b - 1)^{2-D_{\mathcal{W}}} \min_{\substack{O \leq i \leq N_b, 1 \\ O \leq i \leq N_b}} \left| \mathcal{W}\left(\frac{j+1}{N_b-1}\right) - \mathcal{W}\left(\frac{j}{N_b-1}\right) \right| > 0$. Consequently,

$$\mu_{\mathscr{L}}\left(\mathscr{P}_{m,j}\right) \geq \frac{h_{m}^{\inf}\varepsilon_{m}^{m}}{C_{N_{b}}} \geq \frac{C_{\inf}\varepsilon_{m}^{m(3-D_{\mathscr{W}})}}{C_{N_{b}}} \quad , \quad \mu_{\mathscr{L}}\left(\mathscr{Q}_{m,j}\right) \geq \frac{h_{m}^{\inf}\varepsilon_{m}^{m}}{C_{N_{b}}} \geq \frac{C_{\inf}\varepsilon_{m}^{m(3-D_{\mathscr{W}})}}{C_{N_{b}}} \cdot$$

We then deduce that, for any vertex X of V_m ,

$$\mu\left(X,\mathcal{P}_m,\mathcal{Q}_m\right) \geq \frac{1}{N_b} \, \frac{C_{inf} \, \varepsilon_m^{m(3-D_{\mathcal{W}})}}{C_{N_b}} \, \cdot$$

Hence, since the total number of polygons involved is greater than $N_b^m - 1 \ge \frac{N_b^m}{2}$, we can deduce that

$$\sum_{X \in \mathcal{P}_m \bigcup \mathcal{Q}_m} \mu^{\mathcal{L}}(X, \mathcal{P}_m, \mathcal{Q}_m) \geq \frac{\varepsilon_m^{-m}}{2(N_b - 1)} \frac{C_{inf} \varepsilon_m^{m(3 - D_{\mathcal{W}})}}{N_b C_{N_b}} \cdot$$

We then have that

$$\varepsilon_m^{m(D_{\mathcal{W}}-2)} \sum_{X \in \mathcal{P}_m \bigcup \mathcal{Q}_m} \mu^{\mathcal{L}}(X, \mathcal{P}_m, \mathcal{Q}_m) \geq \frac{1}{2(N_b-1)} \frac{C_{inf}}{N_b C_{N_b}} > 0,$$

from which, upon passing to the limit when $m \to \infty$, we can deduce that the polyhedral measure is a nonzero measure, and that its total mass satisfies inequality $(\star \star \star)$.

Proof ~ *iii*. **Supp** $\mu = \Gamma_{\mathscr{W}}$

This simply comes from the proof given in ii, just above that the measure μ is nonzero. If $u \in C(\Gamma_{\mathcal{W}}, \mathbb{R}^+)$, we have that

$$\varepsilon_m^{m(D_{\mathcal{W}}-2)} \sum_{X \in \mathcal{P}_m \bigcup \mathcal{Q}_m} \mu^{\mathcal{L}}(X, \mathcal{P}_m, \mathcal{Q}_m) \ u(X) \geq \frac{1}{2(N_b-1)} \ \frac{C_{inf}}{N_b \ C_{N_b}} \left(\min_{\Gamma_{\mathcal{W}}} u \right) > 0 \cdot$$

Hence, upon passing to the limit when $m \to \infty$, we deduce that $\varphi(u) = \int_{\Gamma_{\mathscr{W}}} u \, d\mu > 0$, and thus, $\varphi(u) \neq 0$, from which the claim follows easily.

Indeed, otherwise, if $\sup \mu \neq \Gamma_{\mathscr{W}}$, there exists $M \in \Gamma_{\mathscr{W}} \setminus \sup \mu$, and thus, by Urisohn's lemma (see, e.g., ^{XI}), there exists $u \in C(\Gamma_{\mathscr{W}})$ and an open neighborhood $\mathscr{V}(M)$ of M in $\Gamma_{\mathscr{W}}$ disjoint from $\sup \mu$ and such that

$$u(M) = 1$$
 , $0 \le u \le 1$, and $u_{|\Gamma_{\mathscr{W}} \setminus \mathscr{V}(M)} = 0$.

Hence, by the above argument, $\varphi(u) \neq 0$, which contradicts the fact that $M \notin \text{supp } \mu$

XI Walter Rudin. *Real and Complex Analysis.* Third. McGraw-Hill Book Co., New York, 1987, pp. xiv+416. ISBN: 0-07-054234-1.

Proof ~ *iv*. μ is a singular measure

First, note that

 $\mu^{\mathscr{L}}(\Gamma_{\mathscr{W}})=0\,,$

because $D_{\mathscr{W}} < 2$, and, up to a multiplicative positive constant, $\mu^{\mathscr{L}}$ coincides with the 2-dimensional measure on \mathbb{R}^2 . Now, since $\operatorname{supp} \mu \subset \Gamma_{\mathscr{W}}$, and $\mu^{\mathscr{L}}(\Gamma_{\mathscr{W}}) = 0$, it follows that μ is supported on a set of Lebesgue measure zero, which precisely implies that μ (viewed as a Borel measure on the rectangle $[0,1] \times [m_{\mathscr{W}}, M_{\mathscr{W}}]$ in the obvious way), is singular with respect to the restriction of $\mu^{\mathscr{L}}$ to this rectangle.

Proof - *iv*. μ is the weak limit of the discrete measures μ_m

Indeed, this follows at once from the fact that, for every $u \in \mathscr{C}(\Gamma_{\mathscr{W}})$,

$$\int_{\Gamma_{\mathscr{W}}} u \, d\mu = \lim_{m \to \infty} \int_{\Gamma_{\mathscr{W}}} u \, d\mu_m \,,$$

as desired.

This completes the proof.

The Quasi Self-Similar Sequence of Discrete Polyhedral Measures

The sequence of discrete polyhedral measures $(\mu_m)_{m \in \mathbb{N}}$ introduced just above, satisfies the following recurrence relation, for all $m \in \mathbb{N}^*$,

The sequence of discrete polyhedral measures $(\mu_m)_{m \in \mathbb{N}}$ introduced in Theorem 53 just above, satisfies the following recurrence relation, for all $m \in \mathbb{N}^*$,

$$\mu_m = N_b^{D_{\mathcal{W}}-2} \sum_{T_j \in \mathcal{T}_{\mathcal{W}}} \mu_{m+1} \circ T_j^{-1}, \qquad (\bigstar)$$

where for $\mathscr{T}_{\mathscr{W}} = \{T_0, \dots, T_{N_b-1}\}$ is the nonlinear iterated function system (IFS) involved.

Note that relation (\blacklozenge) can be viewed as a generalization of classical self-similar measures, as exposed in ^{XII}, page 714.

XII John E. Hutchinson. "Fractals and self similarity". In: Indiana University Mathematics Journal 30 (1981), pp. 713–747.

Proof

First, we can note that, for $m \in \mathbb{N}^{\star}$,

$$\varepsilon_{m+1}^{m+1} = \frac{1}{N_b} \, \varepsilon_m^m \,,$$

which ensures that

$$\varepsilon_{m+1}^{(m+1)(D_{\mathcal{W}}-2)} = \frac{1}{N_b^{D_{\mathcal{W}}-2}} \varepsilon_m^{m(D_{\mathcal{W}}-2)} = N_b^{2-D_{\mathcal{W}}} \varepsilon_m^{m(D_{\mathcal{W}}-2)} \cdot$$

We then simply use the result according to which, for $0 \le j \le N_b - 1$, the j^{th} vertex of the polygon $\mathscr{P}_{m+1,k}$, $0 \le k \le N_b^m - 1$, is the image of the the j^{th} vertex of the polygon $\mathscr{P}_{m,k-i}(N_{b-1})N_b^m$ by the map T_i , where $0 \le j \le N_b - 1$ is arbitrary. Therefore, there is an exact correspondance between polygons at consecutive steps m, m+1: indeed, polygons at the $(m+1)^{th}$ step of the prefractal approximation process are obtained by applying each map T_i , for $0 \le i \le N_b - 1$, to the polygons at the m^{th} step of the prefractal approximation process. We can then deduce that

$$\sum_{X \in \mathcal{P}_m \bigcup \mathcal{Q}_m} \mu^{\mathcal{L}}(X, \mathcal{P}_m, \mathcal{Q}_{m+}) \ \delta_X = \sum_{T_j \in \mathcal{T}_{\mathcal{W}}} \sum_{X \in \mathcal{P}_{m+1} \bigcup \mathcal{Q}_{m+1}} \mu^{\mathcal{L}}\left(X, T_j^{-1}(\mathcal{P}_{m+1}), T_j^{-1}(\mathcal{Q}_{m+1})\right) \delta_X \,,$$

IV. Atomic Decompositions

 \sim

Trace Theorems, and Consequences

Two-Dimensional Polygonal $\pi_{\mathscr{W},m}$ -Net, $m \in \mathbb{N}$

Given a strictly positive integer *m*, we call *two-dimensional polygonal* $\pi_{\mathscr{W},m}$ -net a tessellation of \mathbb{R}^2 into half-open N_b -gons of side lengths at most equal to $\sqrt{2} h_m$ which contains the set of polygons

Property

Given $m \in \mathbb{N}^*$:

i. For any integer $j \in \{0, \dots, N_b^m - 1\}$, and any pair of vertices $(X, Y) \in (V_m \cap \mathscr{P}_{m,j})^2$:

$$d_{eucl}(X,Y) \lesssim N_b h_m \lesssim N_b^{-m(2-D_{\mathcal{W}})} \cdot$$

).

ii. For any integer
$$j \in \{1, \dots, N_b^m - 2\}$$
, and any pair of vertices $(X, Y) \in (V_m \cap \mathcal{Q}_{m,j})^2$:
$$d_{eucl}(X, Y) \leq N_b h_m \leq N_b^{-m(2-D_{\mathcal{W}})}$$

Atoms (Generalization of $^{\times III}$)

Given s < 1, p > 1, $m \in \mathbb{N}$ and $j \in \{0, \dots, N_b^m - 1\}$, a function $f_{m,j}$ defined on $\Gamma_{\mathscr{W}_m}$ is called a $(\mathscr{P}_{m,j}, s, p)$ -atom if the following three conditions are satisfied:

i. Supp
$$f_{m,j} \subset \mathscr{P}_{m,j}$$
;

$$\text{ii. } \forall X \in V_m \cap \mathcal{P}_{m,j}: \quad \left| f_{m,j}(X) \right| \lesssim \mu_{\mathscr{L}} \left(\mathcal{P}_{m,j} \right)^{\frac{s}{D_{\mathscr{W}}} - \frac{1}{p}};$$

$$\begin{array}{l} \label{eq:constraint} \begin{array}{l} \mbox{$iii.$} \ensuremath{ \forall } (X,Y) \in \left(V_m \cap \mathcal{P}_{m,j} \right)^2 : \\ \\ \left| f_{m,j}(X) - f_{m,j}(Y) \right| \lesssim d_{eucl}(X,Y) \, \mu_{\mathcal{L}} \left(\mathcal{P}_{m,j} \right)^{\frac{s-1}{D_{\mathcal{W}}} - \frac{1}{p}} \, . \end{array}$$

XIII M. Kabanava. "Besov Spaces on Nested Fractals by Piecewise Harmonic Functions". In: Zeitschrift für Analysis und ihre Anwendungen 31.2 (2012), pp. 183–201.

Similarly, Given s < 1, p > 1, $m \in \mathbb{N}$ and $j \in \{0, \dots, N_b^m - 1\}$, a function $f_{m,j}$ defined on $\Gamma_{\mathscr{W}_m}$ is called a $(\mathscr{Q}_{m,j}, s, p)$ -atom if the following three conditions are satisfied:

i. Supp
$$f_{m,j} \subset \mathcal{Q}_{m,j}$$
;

$$\left|f_{m,j}(X) - f_{m,j}(Y)\right| \lesssim d_{eucl}(X,Y) \,\mu_{\mathscr{L}}\left(\mathscr{Q}_{m,j}\right)^{\frac{s-1}{D_{\mathscr{W}}} - \frac{1}{p}} \,.$$

Atoms Associated with the Weierstrass Function

The restriction of the Weierstrass function to each polygon $\mathscr{P}_{m,j}$, (resp., $\mathscr{Q}_{m,j}$) is a $(\mathscr{P}_{m,j}, s, p)$ -atom (resp., a $(\mathscr{Q}_{m,j}, s, p)$ -atom).

Atomic Decomposition of a Function Defined on the Weierstrass Curve

Given a continuous function f on the Weierstrass Curve, we will say that f admits *an atomic decomposition* in the following form:

$$f = \lim_{m \to \infty} \sum_{X \in \mathcal{P}_m \bigcup \mathcal{Q}_m} \tilde{\lambda}_{f,m,X} \tilde{f}_{m,X} = \lim_{m \to \infty} \sum_{X \in \mathcal{P}_m \bigcup \mathcal{Q}_m} \tilde{\lambda}_{f,m} \tilde{f}_m,$$

where, for any $m \in \mathbb{N}$, we say that $\tilde{\lambda}_{f,m}$ is the m^{th} -atomic coefficient. The functions $\tilde{f}_{m,X}$ and \tilde{f}_m will be called (m, s, p')-atoms.

Atomic Decomposition of Spline Functions

Given $(n, k) \in \mathbb{N}^2$, a spline function of degree k on $\pi_{\mathcal{W},n}$ admits an atomic decomposition of the form

spline =
$$\lim_{m \to \infty} \sum_{X \in \mathscr{P}_m \bigcup \mathscr{Q}_m} \tilde{\lambda}_{s,m,X} \, \widetilde{spline}_{m,X} \, .$$

(This directly comes from the definition of functions of $\mathscr{P}ol_k(\pi_{N_b^n})$ as piecewise polynomial functions.)

Property

Given the polyhedral measure μ on the Weierstrass Curve $\Gamma_{\mathscr{W}}$, and a continuous function f on $\Gamma_{\mathscr{W}}$, of atomic decomposition

$$f = \lim_{m \to \infty} \sum_{X \in \mathscr{P}_m \bigcup \mathscr{Q}_m} \tilde{\lambda}_{f,m,X} \, \tilde{f}_{m,X} \, ,$$

we have that

$$\int_{\mathscr{D}(\Gamma_{\mathscr{W}})} f \, d\mu = \lim_{m \to \infty} \varepsilon^{m(D_{\mathscr{W}}-2)} \sum_{X \in \mathscr{P}_m \bigcup \mathscr{Q}_m} \tilde{\lambda}_{f,m,X} \, \tilde{f}_{m,X} \, \mu \left(X, \mathscr{P}_m, \mathscr{Q}_m \right) \, \cdot$$

Such a decomposition makes sense since the set of vertices $(V_m)_{m\in\mathbb{N}}$ is dense in $\Gamma_{\mathscr{W}}$. Thus, because we deal with continuous functions, given any point X of the Weierstrass Curve, there exists a sequence $(X_m)_{m\in\mathbb{N}}$ such that

$$f(X) = \lim_{m\to\infty} f(X_m)\,,$$

where, for any $m \in \mathbb{N}$, X_m belongs to the prefractal graph $\Gamma_{\mathscr{W}_m}$. We can naturally write $f(X_m)$ as

$$f(X_m) = \sum_{Y_m \in V_m} f(Y_m) \,\delta_{X_m Y_m}(X_m) \,,$$

where δ is the classical Kronecker symbol; i.e.,

$$\forall Y_m \in V_m : \quad \delta_{X_m Y_m}(Y_m) = \begin{cases} 1, & \text{if } Y_m = X_m, \\ 0, & \text{else.} \end{cases}$$

This, of course, yields

$$f(X) = \lim_{m \to \infty} \sum_{Y_m \in V_m} f(Y_m) \, \delta_{X_m Y_m}(Y_m) \, \cdot$$

Now, we can go a little further and, as in $^{\rm XIV}$, introduce spline functions $\psi^m_{X_m}$ such that

$$\forall Y \in \Gamma_{\mathcal{W}} : \quad \psi_{X_m}^m(Y) = \begin{cases} \delta_{X_m Y_m}, & \forall Y \in V_m \\ 0, & \forall Y \notin V_m, \end{cases}$$

and write

$$f(\boldsymbol{X}) = \lim_{m \to \infty} \sum_{\boldsymbol{Y}_m \in \boldsymbol{V}_m} f(\boldsymbol{Y}_m) \psi_{\boldsymbol{X}_m}^m(\boldsymbol{Y}_m),$$

which is nothing but the application of **the Weierstrass approximation theorem**. In particular, spline functions are a natural choice for atoms.

Cl. David (Sorbonne Université - LJLL)

XIV Robert S. Strichartz. *Differential Equations on Fractals, A tutorial*. Princeton University Press, 2006.

L^p-Norm of a Function on the Weierstrass Curve Defined by Means of an Atomic Decomposition

In the sequel, all functions f considered on the Weierstrass Curve are implicitely supposed to be Lebesgue measurable.

Given $p \in \mathbb{N}^*$, and a continuous function f on $\Gamma_{\mathcal{W}}$, whose absolute value |f| is defined by means of an atomic decomposition as

$$|f| = \lim_{m \to \infty} \sum_{X \in \mathcal{P}_m \bigcup \mathcal{Q}_m} \tilde{\lambda}_{|f|,m,X} \, \widetilde{|f|}_{m,X} \,,$$

its L^{p} -norm for the measure μ is given by

$$\|f\|_{L^{p}(\Gamma_{\mathcal{W}})} = \left(\int_{\mathscr{D}(\Gamma_{\mathcal{W}})} |f|^{p} d\mu\right)^{\overline{p}}$$
$$= \left(\lim_{m \to \infty} \varepsilon^{m(\mathcal{D}_{\mathcal{W}}-3)} \sum_{X \in \mathscr{D}_{m} \cup \mathscr{D}_{m}} \mu^{\mathscr{L}}(X, \mathscr{D}_{m}, \mathscr{D}_{m}) \tilde{\lambda}^{p}_{|f|, m, j, X} |\widetilde{f}|^{p}_{m, j, X}\right)^{\frac{1}{p}}.$$

Besov Space on the Weierstrass Curve (Extension of the result given by Th. 6, p. 135, in^{XV})

Given $k \in \mathbb{N}$, $k < \alpha \le k + 1$, $p \ge 1$ and $q \ge 1$, the *Besov space* $B_{\alpha}^{p,q}(\Gamma_{\mathscr{W}})$ is defined as the set of functions $f \in L^{p}(\mu)$ such that there exists a sequence $(c_{m})_{m\in\mathbb{N}} \in \ell^{q}$ of nonnegative real numbers such that for every $\pi_{N_{b}^{(D_{\mathscr{W}}-3)m}}$ -net, one can find a spline function $spline\left(\pi_{N_{b}^{(D_{\mathscr{W}}-3)m}}\right) \in \mathscr{P}ol_{[\alpha]}\left(\pi_{N_{b}^{(D_{\mathscr{W}}-3)m}}\right)$ satisfying, for all $m \in \mathbb{N}$,

$$\left\| f - spline\left(\pi_{N_{b}^{(D_{\mathcal{W}}-3)m}}\right) \right\|_{L^{p}(\mu)} \leq N_{b}^{(D_{\mathcal{W}}-3)m\alpha} c_{m}, \cdot \quad (\mathscr{C}ond_{Besov \, spline})$$

^{XV}Alf Jonsson and Hans Wallin. *Function spaces on subsets of* \mathbb{R}^n . Mathematical reports (Chur, Switzerland). Harwood Academic Publishers, 1984.

Remark

The atomic decomposition used in^{XVI} is obtained by introducing small neighborhoods of the curve under study (union of balls). Our polygonal domain appears to be a more natural choice. Indeed, unlike the aforementioned balls, the polygons involved do not overlap with each other, which works better for the required nets.

^{XVI}M. Kabanava. "Besov Spaces on Nested Fractals by Piecewise Harmonic Functions". In: *Zeitschrift für Analysis und ihre Anwendungen* 31.2 (2012), pp. 183–201.

Besov Norm

Given $k \in \mathbb{N}$, $k < \alpha \le k + 1$, $p \ge 1$ and $q \ge 1$,we can define, as in^{XVII}, the $B^{p,q}_{\alpha}(\Gamma_{\mathscr{W}})$ norm of a function f defined on the Weierstrass Curve as

$$\|f\|_{B^{p,q}_{\alpha}(\Gamma_{\mathscr{W}})} = \|f\|_{L^{p}(\Gamma_{\mathscr{W}})} + \inf\left\{\sum_{n \in \mathbb{N}} c_{n}^{q}\right\}^{\frac{1}{q}},$$

Yet, in order to obtain a characterization of the Besov space $B^{p,q}_{\alpha}(\Gamma_{\mathcal{W}})$ by means of its norm, it is more useful to deal with the equivalent norm given by

$$\|f\|_{B^{p,q}_{\alpha}(\Gamma_{\mathcal{W}})} = \|f\|_{L^{p}(\Gamma_{\mathcal{W}})} + \left\{\iint_{(T,Y)\in\Gamma^{2}_{\mathcal{W}}} \frac{|f(T)-f(Y)|^{q}}{d^{D_{\mathcal{W}}+\alpha q}(T,Y)} d\mu^{2}\right\}^{\frac{1}{q}} \cdot$$

This enables one to make the link with discrete and fractal Laplacians, by means of the fractional difference quotients involved.

^{XVII}Hans Wallin. "The trace to the boundary of Sobolev spaces on a snowflake". In: *manuscripta math.* 73 (1991), pp. 117–125.

Remark ~ i.

Characterizing Besov spaces on $\Gamma_{\mathscr{W}}$ by means of the previous norm is **directly as**sociated to the definition of a sequence of (suitably renormalized) discrete graph Laplacians $(\Delta_m)_{m \in \mathbb{N}}$ on the sequence of prefractal approximations $(\Gamma_{\mathscr{W}_m})_{m \in \mathbb{N}}$ In a sense, it is also connected to the existence of the limit

$\lim_{m\to\infty}\Delta_m$

by means of an equivalent pointwise formula expressed in terms of integrals, somehow the counterpart, in a way, of the one which is well known in the case of the fractal Laplacian on the Sierpiński Gasket^{XVIII,XIX}.

XVIII Jun Kigami. Analysis on Fractals. Cambridge University Press, 2001.

XIX Robert S. Strichartz. *Differential Equations on Fractals, A tutorial*. Princeton University Press. 2006.

Remark ~ *ii*.

The difficulty, in our context, is to obtain an equivalent formulation of the definition of Besov spaces with the sequence of discrete Laplacians alluded to in part *i*. Clearly, a discrete Laplacian corresponds to the usual first difference. Working with discrete Laplacians, along with atomic decompositions of functions, leads to expressions of the following form:

$$\lim_{m \to \infty} \varepsilon^{2m(D_{\mathcal{W}}-2)} \sum_{(\tau, Y) \in (\mathscr{D}_m \bigcup \mathscr{Q}_m)^2, Y_{\widetilde{m}} \tau} \mu^{\mathscr{L}}(\tau, \mathscr{P}_m, \mathscr{Q}_m) \mu^{\mathscr{L}}(Y, \mathscr{P}_m, \mathscr{Q}_m) \tilde{\lambda}_{f, m} \frac{\left|\tilde{f}_m(\tau) - \tilde{f}_m f(Y)\right|^q}{d_{eucl}^{D_{\mathcal{W}}+(\alpha-k)q}(\tau, Y)} \cdot$$

Theorem: Characterization of Besov Spaces^{XX}

Given $k \in \mathbb{N}$, $k < \alpha \le k + 1$, $p \ge 1$ and $q \ge 1$, and a continuous function f given by means of an atomic decomposition of the form

$$f = \lim_{m \to \infty} \sum_{X \in \mathcal{P}_m \bigcup \mathcal{Q}_m} \tilde{\lambda}_{f,m,X} \, \tilde{f}_{m,X}$$

belongs to the Besov space $B^{p,q}_{\alpha}(\Gamma_{\mathscr{W}})$ if and only if the following two conditions are satisfied,

$$(3 - D_{\mathcal{W}}) \left\{ q \left(\frac{1}{p} - \frac{s - 1}{D_{\mathcal{W}}} \right) \right\} + (2 - D_{\mathcal{W}}) \left(D_{\mathcal{W}} + (\alpha - 1) q \right) < 2, \quad (\mathscr{C}ond_{Besov})$$

and

$$\frac{D_{\mathcal{W}}}{3-D_{\mathcal{W}}}+\frac{D_{\mathcal{W}}}{p}\leq s\,,\quad (\mathscr{C}ond_{L^p})\,\cdot$$

^{XX}Claire David and Michel L. Lapidus. Iterated fractal drums ~ Some New Perspectives: Polyhedral Measures, Atomic Decompositions and Morse Theory. 2022.

Trace of an $L^1_{loc}(\mathbb{R}^2)$ Function on the Weierstrass Curve

Along the lines of ^{XXI}, page 15, or ^{XXII}, we will say that an $L^1_{loc}(\mathbb{R}^2)$ function f is *strictly defined* at a vertex X of the Weierstrass Curve if the following limit exists and is given by

$$\bar{f}(X) = \lim_{m \to \infty} \frac{1}{\mu^{\mathscr{L}}(X, \mathscr{P}_m, \mathscr{Q}_m)} \sum_{Y \sim X} f(Y) < \infty \cdot$$

This enables us to define the trace $f_{|\Gamma_{\mathscr{W}}}$ of the function f on the Weierstrass Curve, via

$$\forall X \in \Gamma_{\mathscr{W}} : f_{|\Gamma_{\mathscr{W}}}(X) = \overline{f}(X) \cdot$$

The trace \overline{f} of an $L^1_{loc}(\mathbb{R}^2)$ function thus naturally admits an atomic decomposition.

XXI Alf Jonsson and Hans Wallin. Function Spaces on Subsets of Rⁿ. Mathematical Reports, Vol. II, Part 1. Harwood Academic Publishers, London, 1984.
 XXII Hans Wallin. "The trace to the boundary of Sobolev spaces on a snowflake". In: manuscripta math. 73 (1991), pp. 117–125.

Associated Sobolev Space

We set

$$m_{\mathscr{W}} = \min_{t \in [0,1]} \mathscr{W}(t) \quad , \quad M_{\mathscr{W}} = \max_{t \in [0,1]} \mathscr{W}(t) \quad , \quad \Omega_{\mathscr{W}} = [0,1] \times [m_{\mathscr{W}}, M_{\mathscr{W}}] \cdot$$

Then,

$$\Gamma_{\mathscr{W}} \subset \Omega_{\mathscr{W}} \subset \mathbb{R}^2,$$

and, given $k \in \mathbb{N}$, and $p \ge 1$,

$$W_{k}^{p}\left(\mathring{\Omega}_{\mathscr{W}}\right) = \left\{ f \in L^{p}\left(\mathring{\Omega}_{\mathscr{W}}\right) , \forall \alpha \leq k, D^{\alpha} f \in L^{p}\left(\mathring{\Omega}_{\mathscr{W}}\right) \right\},$$

where $L^{p}(\mathring{\Omega}_{\mathscr{W}})$ denotes the Lebesgue space of order p on $\mathring{\Omega}_{\mathscr{W}}$, while, for the multiindex $\alpha \leq k$, $D^{\alpha} f$ is the classical partial derivative of order α , interpreted in the weak sense.

Theorem: The Trace of Sobolev Spaces as Besov Spaces (counterpart of the corresponding one obtained in^{XXIII}, Chapter VI)

Given a positive integer k, and a real number $p \ge 1$, we set

$$\beta_{k,p} = k - \frac{2 - D_{\mathcal{W}}}{p} \cdot$$

We then have that

$$W_{k}^{p}\left(\mathring{\Omega}_{\mathscr{W}} \right)_{|\Gamma_{\mathscr{W}}} = B_{\beta}^{p,p}\left(\Gamma_{\mathscr{W}} \right) \cdot$$

^{XXIII}Alf Jonsson and Hans Wallin. *Function spaces on subsets of* \mathbb{R}^n . Mathematical reports (Chur, Switzerland). Harwood Academic Publishers, 1984.

Corollary: Order of the Fractal Laplacian

In the case where k = p = 2, provided that

$$s>1+D_{\mathcal{W}}\;\frac{1-D_{\mathcal{W}}+\left(2-D_{\mathcal{W}}\right)\left(2\,D_{\mathcal{W}}-3\right)}{2\left(3-D_{\mathcal{W}}\right)}\,,$$

we then have that

$$W_2^2\left(\Omega_{\mathcal{W}}\right)_{|\Gamma_{\mathcal{W}}} = B_{\beta_{2,2}}^{2,2}\left(\Gamma_{\mathcal{W}}\right) ,$$

where

$$\beta_{2,2} = 2 - \frac{2 - D_{\mathscr{W}}}{2} = 2 - \frac{1}{2} \frac{\ln \lambda}{\ln N_b} > 2$$

Consequently, by analogy with the classical theories, the Laplacian on the Weierstrass Curve arises as a differential operator of order $\beta_{2,2} \in]2,3[$.

Connection with the Optimal Exponent of Hölder Continuity

We note that

$$\beta_{2,2}=2+\frac{\alpha_{\mathscr{W}}}{2},$$

where the Codimension $\alpha_{\mathscr{W}} = 2 - D_{\mathscr{W}} = -\frac{\ln \lambda}{\ln N_b} \in]0,1[$ is the best (i.e., optimal) Hölder exponent for the Weierstrass function, as was initially obtained by G. H. Hardy in ^{XXIV}), and then, by a completely different method – geometrically – in ^{XXV}.

XXIV Godfrey Harold Hardy. "Weierstrass's Non-Differentiable Function". In: Transactions of the American Mathematical Society 17.3 (1916), pp. 301–325.
 XXV Claire David and Michel L. Lapidus. Weierstrass fractal drums - I - A glimpse of complex

dimensions. 2022.

The Polyhedral Measure In Real Life

The Polyhedral Measure In Real Life

→ Nature produces many fractal-like structures. Until now, the tools of fractal geometry have been little used to model the morphogenesis of these living forms.

 \rightsquigarrow The acellular model organism Physarum polycephalum grows in a network and fractal branched way.

(a) P. polycephalum plasmodium. (b) Vein network.(c) A. Dussutour & C. Oettmeier.

→ The change of shape in Physarum polycephalum corresponds to a change of fractal (complex) dimensions (undergoing work with A. Dussutour, H. Henni, C. Godin).

→ Just as in our mathematical theory.

→ What is the growth law?

→ Can we find the underlying variational principle?

Forthcoming: The Magnitude

→ Counterpart of the (topological) Euler characteristic^{XXVI}.

 \rightsquigarrow New method for numerically determining the Complex Dimensions of a fractal XXVII .

→ Also connected to the polyhedral measure.

XXVI Tom Leinster. "The magnitude of metric spaces". In: Documenta Mathematica 18 (2013), pp. 857–905. ISSN: 1431-0635.
 XXVII Claire David and Michel L. Lapidus. Fractal Complex Dimensions ~ A Bridge to Magnitude. 2023.