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x ∈ R ↦ W (x) =
+∞

∑
n=0

λ
n
cos (π bn x) , 0 < λ < 1 , λb > 1

Continuous everywhere, while being nowhere differentiable
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Introduction

Our question:

Can we find

A suitable measure?
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Geometric Framework

I. The Geometric Framework
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Geometric Framework

We hereafter place ourselves in the Euclidean plane of dimension 2, referred
to a direct orthonormal frame. The usual Cartesian coordinates are (x , y). The
horizontal and vertical axes will be respectively refered to as (x ′x) and (y ′

y).
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Geometric Framework

Notation

In the following, λ and Nb are two real numbers such that:

0 < λ < 1 , Nb ∈ N⋆
and λNb > 1 ⋅

We consider the Weierstrass function W , defined, for any real number x , by

W (x) =
+∞

∑
n=0

λ
n
cos (2πNn

b x) ⋅

Associated graph: the Weierstrass Curve.

Due to the one-periodicity of the W function, we restrict our study to the inter-
val [0, 1[.
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Minkowski (or box-counting) Dimension

DW = 2 +
lnλ

lnNb
, equal to its Hausdorff dimension
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Geometric Framework

The Weierstrass Curve as a Cyclic Curve

In the sequel, we identify the points

(0,W (0)) and (1,W (1)) = (1,W (0)) ⋅

1
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y

Remark

The above convention makes sense, in so far as the points (0,W (0))
and (1,W (1)) have the same vertical coordinate, in addition to the periodic
properties of the W function.
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Property (Symmetry with respect to the vertical line x =
1

2
)

Since, for any x ∈ [0, 1]:

W (1 − x) =
+∞

∑
n=0

λ
n
cos (2πNn

b − 2πN
n
b x) = W (x)

the Weierstrass Curve is symmetric with respect to the vertical straight

line x =
1

2
.

1

2
1
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Proposition (Nonlinear and Noncontractive Iterated Function
System (IFS))

We approximate the restriction ΓW to [0, 1[×R, of the Weierstrass Curve, by a
sequence of finite graphs, built through an iterative process, by using the
nonlinear iterated function system (IFS) of the family of C

∞
maps from R2

to R2
denoted by

TW = {T0,⋯,TNb−1} ,

where, for 0 ≤ i ≤ Nb − 1 and any point (x , y) of R2
,

Ti(x , y) = (x + i

Nb
, λ y + cos (2π (x + i

Nb
))) ⋅

Property (Attractor of the IFS)

The Weierstrass Curve is the attractor of the IFS TW : ΓW =

Nb−1

⋃
i=0

Ti(ΓW ).
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Fixed Points

For any integer i belonging to {0,⋯,Nb − 1}, we denote by:

Pi = (xi , yi) = ( i

Nb − 1
,

1

1 − λ
cos ( 2π i

Nb − 1
))

the fixed point of the map Ti .
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Geometric Framework

Sets of vertices, Prefractals

We set: V0 = {P0,⋯,PNb−1}, and, for any m ∈ N⋆
: Vm =

Nb−1

⋃
i=0

Ti (Vm−1).
For m ∈ N, the set of points Vm, where two consecutive points are linked, is an ori-

ented graph (according to increasing abscissa): the mth
-order W -prefractal ΓWm

.
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Geometric Framework

The Weierstrass IFD

We call Weierstrass Iterated Fractal Drums (IFD) the sequence of prefractal
graphs which converge to the Weierstrass Curve.
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Geometric Framework

Adjacent Vertices, Edge Relation

For any natural integer m, the prefractal graph ΓWm
is equipped with an edge

relation ∼
m
: two vertices X and Y of ΓWm

, i.e. two points belonging to Vm, will

be said to be adjacent (i.e., neighboring or junction points) if and only if the line
segment [X ,Y ] is an edge of ΓWm

; we then write X ∼
m

Y . This edge relation

depends on m, which means that points adjacent in Vm might not remain adjacent
in Vm+1.

X ∈Vm ⋂Vm+1

X ∼
m

Y

Points inVm+1\Vm
Y ∈Vm ⋂Vm+1

Y ∼
m

X

Z ∈Vm+1\Vm+1

Z ∼
m+1

T

T ∈Vm+1\Vm+1

T ∼
m+1

Z
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Geometric Framework

Property

For any natural integer m, we have that

i. Vm ⊂ Vm+1 ⋅

ii. #Vm = (Nb − 1) N
m
b + 1 ⋅

X ∈Vm ⋂Vm+1

X ∼
m

Y

Points inVm+1\Vm
Y ∈Vm ⋂Vm+1

Y ∼
m

X

Z ∈Vm+1\Vm+1

Z ∼
m+1

T

T ∈Vm+1\Vm+1

T ∼
m+1

Z
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iii. The prefractal graph ΓWm
has exactly (Nb − 1) N

m
b edges.

iv. The consecutive vertices of the prefractal graph ΓWm
are the vertices of N

m
b

simple polygons Pm,k with Nb sides. For m ∈ N, the junction point
between two consecutive polygons is the point

( (Nb − 1) k
(Nb − 1)Nm

b

,W ( (Nb − 1) k
(Nb − 1)Nm

b

)) , 1 ≤ k ≤ N
m
b − 1 ⋅

The total number of junction points is thus N
m
b − 1.

For instance, in the case Nb = 3, one gets triangles.
In the sequel, we will denote by P0 the initial polygon, i.e. the one whose
vertices are the fixed points of the maps Ti , 0 ≤ i ≤ Nb − 1.
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The polygons, in the case where λ =
1

2
, and Nb = 3.
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Geometric Framework

The polygons, in the case where λ =
1

2
, and Nb = 7.
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Geometric Framework

The prefractal graphs ΓW0 , ΓW1 , ΓW2 , ΓW3 , in the case where λ =
1

2
, and Nb = 3.
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Geometric Framework

The prefractal graphs ΓW0 , ΓW1 , ΓW2 , ΓW3 , in the case where λ =
1

2
, and Nb = 4.
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Geometric Framework

The prefractal graphs ΓW0 , ΓW1 , ΓW2 , ΓW3 , in the case where λ =
1

2
, and Nb = 7.
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Vertices of the Prefractals, Elementary Lengths,
and Heights

Given m ∈ N, we denote by (Mj ,m)0≤j≤(Nb−1)Nm
b −1 the set of vertices of the

prefractal graph ΓWm
. One thus has, for any integer j in {0,⋯, (Nb − 1)Nm

b − 1}:

Mj,m = ( j

(Nb − 1)Nm
b

,W ( j

(Nb − 1)Nm
b

)) ⋅

We also introduce, for 0 ≤ j ≤ (Nb − 1)Nm
b − 2:

i. the elementary horizontal lengths:

Lm =
1

(Nb − 1)Nm
b

hj ,j+1,m

j

L m

M j,m

M j+1,m

lj ,j+1,m
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ii. the elementary lengths:

ℓj,j+1,m = d (Mj,m,Mj+1,m) =
√
L2m + h2j,j+1,m

iii. the elementary heights:

hj,j+1,m =

»»»»»»»»
W ( j + 1

(Nb − 1)Nm
b

) − W ( j

(Nb − 1)Nm
b

)
»»»»»»»»

hj ,j+1,m

j

L m

M j,m

M j+1,m

lj ,j+1,m
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Geometric Framework

iv. the geometric angles:

θj−1,j,m = ̂((y ′y), (Mj−1,mMj,m)) , θj,j+1,m = ̂((y ′y), (Mj,mMj+1,m)) ,

which yield the value of the geometric angle between consecutive edges
[Mj−1,m Mj,m,Mj,m Mj+1,m]:

θj−1,j,m + θj,j+1,m = arctan
Lm

∣hj−1,j,m∣
+ arctan

Lm

∣hj,j+1,m∣
⋅
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Geometric Framework

Property (Scaling Properties of the Weierstrass Function, and
Consequences)

Since, for any real number x

W (x) =
+∞

∑
n=0

λ
n
cos (2πNn

b x)

one also has

W (Nb x) =
+∞

∑
n=0

λ
n
cos (2πN

n+1
b x) = 1

λ

+∞

∑
n=1

λ
n
cos (2πN

n
b x) = 1

λ
{W (x) − cos (2π x)}

which yield, for any strictly positive integer m, and any j in {0,⋯,#Vm}:

W ( j
(Nb − 1)Nm

b
) = λW ( j

(Nb − 1)Nm−1
b

) + cos( 2π j
(Nb − 1)Nm−1

b

)
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By induction, one obtains that

W ( j
(Nb − 1)Nm

b
) = λ

m
W ( j

(Nb − 1)) +
m−1

∑
k=0

λ
k
cos( 2πNk

b j
(Nb − 1)Nm

b
) ⋅
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A Consequence of the Symmetry with respect to the Vertical

Line x =
1

2

For any strictly positive integer m and any j in {0,⋯,#Vm}, we have that

W ( j

(Nb − 1)Nm
b

) = W ((Nb − 1)Nm
b − j

(Nb − 1)Nm
b

)

which means that the points

((Nb − 1)Nm
b − j

(Nb − 1)Nm
b

,W ((Nb − 1)Nm
b − j

(Nb − 1)Nm
b

)) and ( j
(Nb − 1)Nm

b
,W ( j

(Nb − 1)Nm
b

))

are symmetric with respect to the vertical line x =
1

2
.
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M j-1,m

M j-1+p,m

M(Nb-1)Nb
m
- j+1,m

M(Nb-1)Nb
m
- j+1-p,m

x =
1

2

1
x

-1

1

y

Figure: Symmetric points with respect to the vertical line x =
1

2
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Property

i. For 0 ≤ j ≤
(Nb − 1)

2
: W ( j + 1

Nb − 1
) − W ( j

Nb − 1
) ≤ 0.

ii. For
(Nb − 1)

2
≤ j ≤ Nb − 1: W ( j + 1

Nb − 1
) − W ( j

Nb − 1
) ≥ 0.

j + 1

Nb - 1

j

Nb - 1

1
x

-1

1

y

j + 1

Nb - 1

j

Nb - 1

1
x

-1

1

y
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Property

Given a strictly positive integer m:

i. For any j in {0,⋯,#Vm}, the point

( j

(Nb − 1)Nm
b

,W ( j

(Nb − 1)Nm
b

))

is the image of the point

( j

(Nb − 1)Nm−1
b

− i,W ( j

(Nb − 1)Nm−1
b

− i)) = ( j − i (Nb − 1)Nm−1
b

(Nb − 1)Nm−1
b

,W ( j − i (Nb − 1)Nm−1
b

(Nb − 1)Nm−1
b

))

by the map Ti , 0 ≤ i ≤ Nb − 1.
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As a consequence, the j th vertex of the polygon Pm,k , 0 ≤ k ≤ N
m
b − 1,

0 ≤ j ≤ Nb − 1, i.e. the point:

((Nb − 1) k + j

(Nb − 1)Nm
b

,W ((Nb − 1) k + j

(Nb − 1)Nm
b

))

is the image of the point

⎛
⎜
⎝
(Nb − 1) (k − i (Nb − 1)Nm−1

b ) + j

(Nb − 1)Nm−1
b

,W
⎛
⎜
⎝
(Nb − 1) (k − i (Nb − 1)Nm−1

b ) + j

(Nb − 1)Nm−1
b

⎞
⎟
⎠
⎞
⎟
⎠

i.e. is the the j th vertex of the polygon Pm−1,k−i (Nb−1)Nm−1
b

.
There is thus an exact correspondence between vertices of the polygons
at consecutive steps m − 1, m.

ii. Given j in {0,⋯,Nb − 2}, and k in {0,⋯,N
m
b − 1} :

sign (W ( k (Nb − 1) + j + 1

(Nb − 1)Nm
b

) − W ( k (Nb − 1) + j

(Nb − 1)Nm
b

)) = sign (W ( j + 1

Nb − 1
) − W ( j

Nb − 1
)) ⋅
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Bounding Result: Upper and Lower Bounds
for the Elementary Heights

For any strictly positive integer m, and any j in {0,⋯, (Nb − 1)Nm
b }, we have

that

Cinf λ
m

Í ÒÒÒÑÒÒÒ Ï
Nm (DW −2)

b

≤

»»»»»»»»
W ( j + 1

(Nb − 1)Nm
b
) − W ( j

(Nb − 1)Nm
b
)
»»»»»»»»
≤ Csup λ

m

Í ÒÒÒÑÒÒÒ Ï
Nm (DW −2)

b

L m

M j,m

M j+1,m

j

(Nb - 1) Nb
m

j + 1

(Nb - 1) Nb
m
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where

Cinf = (Nb − 1)2−DW min
0≤j≤Nb−1

»»»»»»»»
W ( j + 1

Nb − 1
) − W ( j

Nb − 1
)
»»»»»»»»

and

Csup = (Nb − 1)2−DW ( max
0≤j≤Nb−1

»»»»»»»»
W ( j + 1

Nb − 1
) − W ( j

Nb − 1
)
»»»»»»»»
+

2π

(Nb − 1) (λNb − 1) ) ⋅

These constants depend on the initial polygon P0.

Cl. David (Sorbonne Université - LJLL) Polyhedral Measures, Atomic decompositions 36 / 91



37/91

Geometric Framework

Theorem: Sharp Local Discrete Reverse Hölder
Properties of the Weierstrass Function

For any natural integer m, and any pair of real numbers (x , x ′) such that:

x =
(Nb − 1) k + j

(Nb − 1)Nm
b

= ((Nb − 1) k + j) Lm , x
′
=

(Nb − 1) k + j + ℓ

(Nb − 1)Nm
b

= ((Nb − 1) k + j + ℓ) Lm

where 0 ≤ k ≤ Nb − 1
m − 1, and

i. if the integer Nb is odd,

0 ≤ j <
Nb − 1

2
and 0 < j + ℓ ≤

Nb − 1

2

or
Nb − 1

2
≤ j < Nb − 1 and

Nb − 1

2
< j + ℓ ≤ Nb − 1 ;

ii. if the integer Nb is even,

0 ≤ j <
Nb

2
and 0 < j + ℓ ≤

Nb

2

or
Nb

2
+ 1 ≤ j < Nb − 1 and

Nb

2
+ 1 < j + ℓ ≤ Nb − 1 ,
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Left - side vertices Right - side vertices

Bottom vertex

x

y

Left - side vertices

Right - side vertices

Bottom vertex

1
x

-1

1

y

This means that the points (x,W (x)) and (x ′
,W (x ′)) are vertices of the poly-

gon Pm,k both located on the left-side of the polygon, or on the right-side.
Then, one has the following reverse-Hölder inequality, with sharp Hölder expo-

nent −
lnλ

lnNb
= 2 − DW ,

Cinf
»»»»»x

′
− x»»»»»

2−DW
≤
»»»»»W (x ′) − W (x)»»»»» ⋅
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Corollary

One may now write, for any m ∈ N⋆
, and 0 ≤ j ≤ (Nb − 1)Nm

b − 1:

i. for the elementary heights:

hj−1,j,m = L
2−DW
m O (1)

ii. for the elementary quotients:

hj−1,j,m
Lm

= L
1−DW
m O (1)

where:

0 < Cinf ≤ O (1) ≤ Csup < ∞⋅
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II. Polyhedral Measure
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mth
Cohomology Infinitesimal

Given any m ∈ N, we will call m
th

cohomology infinitesimal the number

ε
m
m =

1

Nb − 1

1

Nm
b

→
m→∞

0 ⋅

Note that this m
th

cohomology infinitesimal is the one naturally associated to the
scaling relation of W .

Mj,m

Mj+1,m

hj ,j+1,m

ϵm
m
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Polygonal Sets
For any m ∈ N, the consecutive vertices of the prefractal graph ΓWm

are the vertices
of N

m
b simple polygons Pm,k with Nb sides.

We now introduce the polygonal sets

Pm = {Pm,k , 0 ≤ k ≤ N
m
b − 1} and Qm = {Qm,k , 0 ≤ k ≤ N

m
b − 2} ⋅

P0 P2

P1

polygon P1,0

polygon P1,1

polygon P1,2

polygon Q1,2polygon Q1,1

Initial polygon 

1
x

-1

1

y

Cl. David (Sorbonne Université - LJLL) Polyhedral Measures, Atomic decompositions 42 / 91



43/91

Polyhedral Measure

Notation

For any m ∈ N, we denote by:

ii . X ∈ Pm (resp., X ∈ Qm) a vertex of a polygon Pm,k ,
with 0 ≤ k ≤ N

m
b − 1 (resp., a vertex of a polygon Qm,k ,

with 1 ≤ k ≤ N
m
b − 2).

ii . Pm ⋃Qm the reunion of the polygonal sets Pm and Qm, which consists in
the set of all the vertices of the polygons Pm,k , with 0 ≤ k ≤ N

m
b − 1, along

with the vertices of the polygons Qm,k , with 1 ≤ k ≤ N
m
b − 2. In

particular, X ∈ Pm ⋃Qm simply denotes a vertex in Pm or Qm.

iii . Pm ⋂Qm the intersection of the polygonal sets Pm and Qm, which
consists in the set of all the vertices of both a polygon Pm,k ,

with 0 ≤ k ≤ N
m
b − 1, and a polygon Qm,k ′ , with 1 ≤

′
k ≤ N

m
b − 2.
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Power of a Vertex

Given m ∈ N⋆
, a vertex X of ΓWm is said:

i. of power one relative to the polygonal family Pm if X belongs to (or is a
vertex of) one and only one Nb-gon Pm,j , for 0 ≤ j ≤ N

m
b − 1;

ii. of power
1

2
relative to the polygonal family Pm if X is a common vertex

to two consecutive Nb-gons Pm,j and Pm,j+1, for 0 ≤ j ≤ N
m
b − 2;

iii. of power zero reative to the polygonal family Pm if X does not belong to
(or is not a vertex of) any Nb-gon Pm,j , for 0 ≤ j ≤ N

m
b − 1.
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Similarly, given m ∈ N, a vertex X of ΓWm is said:

i. of power one relative to the polygonal family Qm if X belongs to (or is a
vertex of) one and only one Nb-gon Pm,j , for 0 ≤ j ≤ N

m
b − 2;

ii. of power
1

2
relative to the polygonal family Pm if X is a common vertex

to two consecutive Nb-gons Qm,j and Qm,j+1, for 0 ≤ j ≤ N
m
b − 3;

iii. of power zero reative to the polygonal family Pm if X does not belong to
(or is not a vertex of) any Nb-gon Qm,j , for 0 ≤ j ≤ N

m
b − 2.
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Sequence of Domains Delimited by the W IFD
We introduce the sequence of domains delimited by the Weierstrass IFD as the
sequence (D (ΓWm))m ∈N of open, connected polygonal sets (Pm ∪ Qm)m ∈N,
where, for each m ∈ N, Pm and Qm respectively denote the polygonal sets in-
troduced just above.

D (ΓW2
) and D (ΓW3

), for λ =
1

2
and Nb = 3.
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D (ΓW5
), for λ =

1

2
and Nb = 3.
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Domain Delimited by the Weierstrass IFD

We call domain, delimited by the Weierstrass IFD, the set, which is equal to the
following limit,

D (ΓW ) = lim
m→∞

D (ΓWm) ,

where the convergence is interpreted in the sense of the Hausdorff metric on R2
.

In fact, we have that

D (ΓW ) = ΓW ⋅
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Notation (Lebesgue Measure (on R2
))

In the sequel, we denote by µL the Lebesgue measure on R2
.

Notation
For any m ∈ N, and any vertex X of Vm, we set:

µ
L (X ,Pm,Qm) =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

1

Nb
p (X ,Pm) ∑

0≤j≤Nm
b −1,X vertex of Pm,j

µL (Pm,j ) , if X ∉ Qm ,

1

Nb
p (X ,Qm) ∑

1≤j≤Nm
b −2,X vertex of Pm,j

µL (Qm,j ) , if X ∉ Pm ,

1

2Nb

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎩

p (X ,Pm) ∑
0 ≤ j ≤ N

m
b − 1,

X vertex of Pm,j

µL (Pm,j ) + p (X ,Qm) ∑
1 ≤ j ≤ N

m
b − 2,

X vertex of Qm,j

µL (Qm,j )

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎬⎪⎪⎪⎪⎪⎪⎪⎪⎭

,

if X ∈ Pm ∩ Qm ⋅
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Property
We set

mW = min
t ∈ [0,1]

W (t) , MW = max
t ∈ [0,1]

W (t) ⋅

Given a continuous function u on [0, 1] × [mW ,MW ], we have that, for anym ∈ N,
and any vertex X of Vm:

»»»»»µ
L (X ,Pm,Qm) u (X)»»»»» ≤ µ

L (X ,Pm,Qm) ( max
[0,1]×[mW ,MW ]

∣u∣) ≲ N−(3−DW )m
b ⋅

Consequently, we have that

ε
m (DW −2)
m

»»»»»µ
L (X ,Pm,Qm) u (X)»»»»» ≲ ε

−m
m ⋅

Since the sequence
⎛
⎜
⎝

∑
X ∈Pm ⋃Qm

ε
−m
m

⎞
⎟
⎠

m ∈N

is a positive and increasing sequence

(the number of vertices involved increases as m increases), this ensures the existence
of the finite limit

lim
m→∞

ε
m (DW −2)
m ∑

X ∈Pm ⋃Qm

µ
L (X ,Pm,Qm) u (X) ⋅
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Proof

For any m ∈ N, and any vertex X of Vm, we have that

µ
L (X ,Pm,Qm) ≲ εm (DW −3)

m and µ
L (X ,Pm,Qm) ≲ εm (DW −3)

m ⋅

The total number of polygons Pm is N
m
b , while the total number of polygons Qm

is equal to N
m
b − 1. We then have that

∑
X ∈Pm ⋃Qm

µ
L (X ,Pm,Qm) ≲ ε

m (2−DW )
m ,

which, as desired, ensures the existence of the finite limit

( max
[0,1]×[mW ,MW ]

∣u∣) lim
m→∞

ε
m (DW −2)
m ∑

X ∈Pm ⋃Qm

µ
L (X ,Pm,Qm) ⋅
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Polyhedral Measure on the Weierstrass IFD

We introduce the polyhedral measure on the Weierstrass IFD, denoted by µ, such
that for any continuous function u on the Weierstrass Curve,

∫
ΓW

u dµ = lim
m→∞

ε
m (DW −2)
m ∑

X ∈Pm ⋃Qm

µ
L (X ,Pm,Qm) u (X) , (⋆)

which can also be understood in the following way,

∫
ΓW

u dµ = ∫
D(ΓW )

u dµ ⋅
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Theorem - I

The polyhedral measure µ is well defined, positive, as well as a bounded,
nonzero, Borel measure on D (ΓW ). The associated total mass is given by

µ (D (ΓW )) = lim
m→∞

ε
m (DW −2)
m ∑

X ∈Pm ⋃Qm

µ
L (X ,Pm,Qm) , (⋆⋆)

and satisfies the following estimate:

µ (D (ΓW )) ≤ 2

Nb
(Nb − 1)2 Csup ⋅ (⋆ ⋆ ⋆)

Furthermore, the support of µ coincides with the entire curve:

suppµ = D (ΓW ) = ΓW ⋅
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Theorem - II

In addition, µ is the weak limit as m → ∞ of the following discrete measures (or
Dirac Combs), given, for each m ∈ N, by

µm = ε
m (DW −2)
m ∑

X ∈Pm ⋃Qm

µ
L (X ,Pm,Qm) δX ,

where ε denotes the cohomology infinitesimal, and δX the Dirac measure concen-
trated at X .
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Proof ∼ i . µ is a well defined measure.

Indeed, the map φ

u ↦ φ(u) = ∫
ΓW

u dµ

is a well defined linear functional on the space C (ΓW ) of real-valued, continuous
functions on ΓW . Hence, by a well-known argument, it is a continuous linear func-
tional on C (ΓW ), equipped with the sup norm. Since ΓW is compact, and in light of
its definition, µ is a bounded, Radon measure, with total mass φ(1) = µ (D (ΓW )),
also given by (⋆⋆), and where 1 denotes the constant function equal to 1 on ΓW .
Then, according to the Riesz representation theorem, the associated positive Borel
measure (still denoted by µ) is a bounded and positive Borel measure with the same
total mass µ (D (ΓW )) = µ (ΓW ).
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Proof ∼ ii . The nonzero measure – Estimates for the
total mass of µ

For 0 ≤ j ≤ N
m
b − 1, each polygon Pm,j is contained in a rectangle of height at most

equal to (Nb − 1) hm, and of width at most equal to (Nb − 1) Lm. This ensures that
the Lebesgue measure of each polygon Pm,j is at most equal to (Nb − 1)2 hm Lm.
We also have the following estimate

hm ≤ Csup L
2−DW
m ,

where

Csup = (Nb − 1)2−DW ( max
0≤j≤Nb−1

»»»»»»»»
W ( j + 1

Nb − 1
) − W ( j

Nb − 1
)
»»»»»»»»
+

2π

(Nb − 1) (λNb − 1) ) ⋅

Consequently:

µL (Pm,j) ≤ (Nb − 1)2 Csup L
3−DW
m , µL (Qm,j) ≤ (Nb − 1)2 Csup L

3−DW
m ⋅
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We then deduce that, for any vertex X of Vm,

µ (X ,Pm,Qm) ≤
1

Nb
(Nb − 1)2 Csup L

3−DW
m ⋅

Hence, since the total number of polygons involved is at most equal to
2N

m
b − 1 ≤ 2N

m
b , we can deduce that

∑
X ∈Pm ⋃Qm

µ
L (X ,Pm,Qm) ≤ 2

ε
−m
m

Nb
(Nb − 1)2 Csup ε

m (3−DW )
m ⋅

We then have that

ε
m (DW −2)
m ∑

X ∈Pm ⋃Qm

µ
L (X ,Pm,Qm) ≤

2

Nb
(Nb − 1)2 Csup < ∞ ,

from which we can deduce that the polyhedral measure is a bounded measure.
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For the sake of simplicity, we restrict ourselves to the case when Nb < 7.
For 0 ≤ j ≤ N

m
b − 1, each polygon Pm,j (which is convex) contains an inscribed

circle, whose Lebesgue measure is greater than
h
inf
m ε

m
m

CNb

, where

h
inf
m = inf

0≤j≤(Nb−1)Nm
b −1

hj,j+1,m

and where CNb
> 0.

Mj,m

Mj+1,m

hj ,j+1,m

ϵm
mWe recall that

Cinf ε
m (2−DW )
m ≤ h

inf
m , where Cinf = (Nb − 1)2−DW min

0≤j≤Nb−1

»»»»»»»»
W ( j + 1

Nb − 1
) − W ( j

Nb − 1
)
»»»»»»»»
> 0 ⋅

Consequently,

µL (Pm,j) ≥
h
inf
m ε

m
m

CNb

≥
Cinf ε

m (3−DW )
m

CNb

, µL (Qm,j) ≥
h
inf
m ε

m
m

CNb

≥
Cinf ε

m (3−DW )
m

CNb

⋅
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We then deduce that, for any vertex X of Vm,

µ (X ,Pm,Qm) ≥
1

Nb

Cinf ε
m (3−DW )
m

CNb

⋅

Hence, since the total number of polygons involved is greater than N
m
b − 1 ≥

N
m
b

2
,

we can deduce that

∑
X ∈Pm ⋃Qm

µ
L (X ,Pm,Qm) ≥

ε
−m
m

2 (Nb − 1)
Cinf ε

m (3−DW )
m

Nb CNb

⋅

We then have that

ε
m (DW −2)
m ∑

X ∈Pm ⋃Qm

µ
L (X ,Pm,Qm) ≥

1

2 (Nb − 1)
Cinf

Nb CNb

> 0 ,

from which, upon passing to the limit when m → ∞, we can deduce that the
polyhedral measure is a nonzero measure, and that its total mass satisfies inequal-
ity (⋆ ⋆ ⋆).
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Proof ∼ iii . Supp µ = ΓW

This simply comes from the proof given in ii . just above that the measure µ is
nonzero. If u ∈ C (ΓW ,R

+), we have that

ε
m (DW −2)
m ∑

X ∈Pm ⋃Qm

µ
L (X ,Pm,Qm) u(X ) ≥ 1

2 (Nb − 1)
Cinf

Nb CNb

(min
ΓW

u) > 0 ⋅

Hence, upon passing to the limit whenm → ∞, we deduce that φ(u) = ∫
ΓW

u dµ > 0,

and thus, φ(u) ≠ 0, from which the claim follows easily.
Indeed, otherwise, if suppµ ≠ ΓW , there exists M ∈ ΓW \ suppµ, and thus, by

Urisohn’s lemma (see, e.g.,
XI
), there exists u ∈ C (ΓW ) and an open neighbor-

hood V (M) of M in ΓW disjoint from suppµ and such that

u(M) = 1 , 0 ≤ u ≤ 1 , and u∣ΓW \V (M) = 0 ⋅

Hence, by the above argument, φ(u) ≠ 0, which contradicts the fact thatM ∉ suppµ .

XI
Walter Rudin. Real and Complex Analysis. Third. McGraw-Hill Book Co., New York, 1987,

pp. xiv+416. isbn: 0-07-054234-1.
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Proof ∼ iv . µ is a singular measure

First, note that

µ
L (ΓW ) = 0 ,

because DW < 2, and, up to a multiplicative positive constant, µ
L

coincides with

the 2-dimensional measure on R2
. Now, since suppµ ⊂ ΓW , and µ

L (ΓW ) = 0,
it follows that µ is supported on a set of Lebesgue measure zero, which precisely
implies that µ (viewed as a Borel measure on the rectangle [0, 1] × [mW ,MW ] in

the obvious way), is singular with respect to the restriction of µ
L

to this rectangle.
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Proof - iv . µ is the weak limit of the discrete
measures µm

Indeed, this follows at once from the fact that, for every u ∈ C (ΓW ),

∫
ΓW

u dµ = lim
m→∞

∫
ΓW

u dµm ,

as desired.

This completes the proof.
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The Quasi Self-Similar Sequence of Discrete
Polyhedral Measures

The sequence of discrete polyhedral measures (µm)m∈N introduced just above,
satisfies the following recurrence relation, for all m ∈ N⋆

,
The sequence of discrete polyhedral measures (µm)m∈N introduced in Theorem 53
just above, satisfies the following recurrence relation, for all m ∈ N⋆

,

µm = N
DW −2
b ∑

Tj ∈TW

µm+1 ◦ T
−1
j , (♠)

where for TW = {T0,⋯,TNb−1} is the nonlinear iterated function system (IFS)
involved.

Note that relation (♠) can be viewed as a generalization of classical self-similar

measures, as exposed in
XII
, page 714.

XII
John E. Hutchinson. “Fractals and self similarity”. In: Indiana University Mathematics

Journal 30 (1981), pp. 713–747.
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Proof
First, we can note that, for m ∈ N⋆

,

ε
m+1
m+1 =

1

Nb
ε
m
m ,

which ensures that

ε
(m+1) (DW −2)
m+1 =

1

N
DW −2
b

ε
m (DW −2)
m = N

2−DW

b ε
m (DW −2)
m ⋅

We then simply use the result according to which, for 0 ≤ j ≤ Nb − 1, the j
th

vertex of the polygon Pm+1,k , 0 ≤ k ≤ N
m
b − 1, is the image of the the j

th
ver-

tex of the polygon Pm,k−i (Nb−1)Nm
b
by the map Ti , where 0 ≤ j ≤ Nb − 1 is arbi-

trary. Therefore, there is an exact correspondance between polygons at consecutive

steps m, m + 1: indeed, polygons at the (m + 1)th step of the prefractal approxi-
mation process are obtained by applying each map Ti , for 0 ≤ i ≤ Nb − 1, to the

polygons at the m
th

step of the prefractal approximation process. We can then
deduce that

∑
X ∈Pm ⋃Qm

µ
L (X ,Pm,Qm+) δX = ∑

Tj ∈TW

∑
X ∈Pm+1 ⋃Qm+1

µ
L (X ,T

−1
j (Pm+1) ,T−1

j (Qm+1)) δX ,
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IV. Atomic Decompositions

∼

Trace Theorems, and Consequences
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Two-Dimensional Polygonal πW ,m-Net, m ∈ N
Given a strictly positive integer m, we call two-dimensional polygonal πW ,m-net a

tessellation of R2
into half-open Nb-gons of side lengths at most equal to

√
2 hm

which contains the set of polygons

⎧⎪⎪⎪⎨⎪⎪⎪⎩

N
m
b −1

⋃
j=0

Pm,j

⎫⎪⎪⎪⎬⎪⎪⎪⎭
⋃

⎧⎪⎪⎪⎨⎪⎪⎪⎩

N
m
b −2

⋃
k=1

Qm,k

⎫⎪⎪⎪⎬⎪⎪⎪⎭
⋅

X ∈ �m

Pm, j

�m,k+1
Pm, j+1

Pm, j+2

�m,k

1
x

-1

1

y
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Atomic Decompositions – Trace Theorems, and Consequences

Property

Given m ∈ N⋆
:

i . For any integer j ∈ {0,⋯,N
m
b − 1}, and any pair of

vertices (X ,Y ) ∈ (Vm ∩ Pm,j)2:

deucl(X ,Y ) ≲ Nb hm ≲ N
−m (2−DW )
b ⋅

ii . For any integer j ∈ {1,⋯,N
m
b − 2}, and any pair of

vertices (X ,Y ) ∈ (Vm ∩ Qm,j)2:

deucl(X ,Y ) ≲ Nb hm ≲ N
−m (2−DW )
b ⋅
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Atoms (Generalization of
XIII

)

Given s < 1, p > 1,m ∈ N and j ∈ {0,⋯,N
m
b − 1}, a function fm,j defined on ΓWm

is called a (Pm,j , s,p)-atom if the following three conditions are satisfied:

i . Supp fm,j ⊂ Pm,j ;

ii . ∀X ∈ Vm ∩ Pm,j ∶ ∣fm,j(X )∣ ≲ µL (Pm,j)
s

DW
− 1

p ;

iii . ∀ (X ,Y ) ∈ (Vm ∩ Pm,j)2 :

∣fm,j(X ) − fm,j(Y )∣ ≲ deucl(X ,Y )µL (Pm,j)
s−1
DW

− 1
p ⋅

XIII
M. Kabanava. “Besov Spaces on Nested Fractals by Piecewise Harmonic Functions”. In:

Zeitschrift für Analysis und ihre Anwendungen 31.2 (2012), pp. 183–201.
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Similarly, Given s < 1, p > 1, m ∈ N and j ∈ {0,⋯,N
m
b − 1}, a function fm,j

defined on ΓWm
is called a (Qm,j , s,p)-atom if the following three conditions are

satisfied:

i . Supp fm,j ⊂ Qm,j ;

ii . ∀X ∈ Vm ∩ Pm,j ∶ ∣fm,j(X )∣ ≲ µL (Qm,j)
s

DW
− 1

p ;

iii . ∀ (X ,Y ) ∈ (Vm ∩ Qm,j)2 :

∣fm,j(X ) − fm,j(Y )∣ ≲ deucl(X ,Y )µL (Qm,j)
s−1
DW

− 1
p ⋅
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Atoms Associated with the Weierstrass Function

The restriction of the Weierstrass function to each polygon Pm,j , (resp., Qm,j) is
a (Pm,j , s, p)-atom (resp., a (Qm,j , s, p)-atom).
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Atomic Decomposition of a Function Defined on the
Weierstrass Curve

Given a continuous function f on the Weierstrass Curve, we will say that f admits
an atomic decomposition in the following form:

f = lim
m→∞

∑
X ∈Pm ⋃Qm

λ̃f ,m,X f̃m,X = lim
m→∞

∑
X ∈Pm ⋃Qm

λ̃f ,m f̃m ,

where, for any m ∈ N, we say that λ̃f ,m is the m
th
-atomic coefficient.

The functions f̃m,X and f̃m will be called (m, s, p′)-atoms.
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Atomic Decomposition of Spline Functions

Given (n, k) ∈ N2
, a spline function of degree k on πW ,n admits an atomic decom-

position of the form

spline = lim
m→∞

∑
X ∈Pm ⋃Qm

λ̃s,m,X s̃plinem,X ⋅

(This directly comes from the definition of functions of Polk (πNn
b
) as piecewise

polynomial functions.)
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Property

Given the polyhedral measure µ on the Weierstrass Curve ΓW , and a continuous
function f on ΓW , of atomic decomposition

f = lim
m→∞

∑
X ∈Pm ⋃Qm

λ̃f ,m,X f̃m,X ,

we have that

∫
D(ΓW )

f dµ = lim
m→∞

ε
m (DW −2) ∑

X ∈Pm ⋃Qm

λ̃f ,m,X f̃m,X µ (X ,Pm,Qm) ⋅
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Such a decomposition makes sense since the set of vertices (Vm)m∈N is dense
in ΓW . Thus, because we deal with continuous functions, given any point X of the
Weierstrass Curve, there exists a sequence (Xm)m∈N such that

f (X ) = lim
m→∞

f (Xm) ,

where, for any m ∈ N, Xm belongs to the prefractal graph ΓWm
.

We can naturally write f (Xm) as

f (Xm) = ∑
Ym ∈Vm

f (Ym) δXmYm
(Xm) ,

where δ is the classical Kronecker symbol; i.e.,

∀Ym ∈ Vm ∶ δXmYm
(Ym) = { 1 , if Ym = Xm ,

0 , else.

This, of course, yields

f (X ) = lim
m→∞

∑
Ym ∈Vm

f (Ym) δXmYm
(Ym) ⋅
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Now, we can go a little further and, as in
XIV

, introduce spline functions ψ
m
Xm

such
that

∀Y ∈ ΓW ∶ ψ
m
Xm

(Y ) = { δXmYm
, ∀Y ∈ Vm

0 , ∀Y ∉ Vm ,

and write

f (X) = lim
m→∞

∑
Ym ∈Vm

f (Ym)ψm
Xm

(Ym) ,

which is nothing but the application of the Weierstrass approximation theorem.
In particular, spline functions are a natural choice for atoms.

XIV
Robert S. Strichartz. Differential Equations on Fractals, A tutorial. Princeton University

Press, 2006.
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L
p
-Norm of a Function on the Weierstrass Curve

Defined by Means of an Atomic Decomposition

In the sequel, all functions f considered on the Weierstrass Curve are implicitely
supposed to be Lebesgue measurable.

Given p ∈ N⋆
, and a continuous function f on ΓW , whose absolute value ∣f ∣ is

defined by means of an atomic decomposition as

∣f ∣ = lim
m→∞

∑
X ∈Pm ⋃Qm

λ̃∣f ∣,m,X ∣̃f ∣m,X ,

its L
p
-norm for the measure µ is given by

∥f ∥Lp (ΓW ) = (∫
D(ΓW )

∣f ∣p dµ)
1
p

=

⎛
⎜
⎝
lim

m→∞
ε

m (DW −3) ∑
X ∈Pm ⋃Qm

µ
L (X ,Pm,Qm) λ̃

p
∣f ∣,m,j,X ∣̃f ∣

p
m,j,X

⎞
⎟
⎠

1
p

⋅
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Besov Space on the Weierstrass Curve

(Extension of the result given by Th. 6, p. 135, in
XV
)

Given k ∈ N, k < α ≤ k + 1, p ≥ 1 and q ≥ 1, the Besov space B
p,q
α (ΓW ) is defined

as the set of functions f ∈ L
p(µ) such that there exists a sequence (cm)m∈N ∈ ℓ

q

of nonnegative real numbers such that for every π
N

(DW −3)m
b

-net, one can find a spline

function spline (π
N

(DW −3)m
b

) ∈ Pol[α] (πN(DW −3)m
b

) satisfying, for all m ∈ N,

ÂÂÂÂÂÂf − spline (πN(DW −3)m
b

)ÂÂÂÂÂÂLp(µ)
≤ N(DW −3)mα

b cm , ⋅ (C ondBesov spline)

XV
Alf Jonsson and Hans Wallin. Function spaces on subsets of Rn

. Mathematical reports
(Chur, Switzerland). Harwood Academic Publishers, 1984.
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Remark

The atomic decomposition used in
XVI

is obtained by introducing small neighbor-
hoods of the curve under study (union of balls). Our polygonal domain appears
to be a more natural choice. Indeed, unlike the aforementioned balls, the polygons
involved do not overlap with each other, which works better for the required nets.

XVI
M. Kabanava. “Besov Spaces on Nested Fractals by Piecewise Harmonic Functions”. In:

Zeitschrift für Analysis und ihre Anwendungen 31.2 (2012), pp. 183–201.
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Besov Norm

Given k ∈ N, k < α ≤ k + 1, p ≥ 1 and q ≥ 1,we can define, as in
XVII

, the B
p,q
α (ΓW )-

norm of a function f defined on the Weierstrass Curve as

∥f ∥B
p,q
α (ΓW ) = ∥f ∥Lp(ΓW ) + inf {∑

n∈N
c
q
n}

1
q

,

Yet, in order to obtain a characterization of the Besov space B
p,q
α (ΓW ) by means

of its norm, it is more useful to deal with the equivalent norm given by

∥f ∥Bp,q
α (ΓW ) = ∥f ∥Lp(ΓW ) + {∫∫

(T ,Y )∈Γ2
W

∣f (T) − f (Y )∣q

dDW +αq
eucl (T ,Y )

dµ2}
1
q

⋅

This enables one to make the link with discrete and fractal Laplacians, by means
of the fractional difference quotients involved.

XVII
Hans Wallin. “The trace to the boundary of Sobolev spaces on a snowflake”. In:

manuscripta math. 73 (1991), pp. 117–125.
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Remark ∼ i .

Characterizing Besov spaces on ΓW by means of the previous norm is directly as-
sociated to the definition of a sequence of (suitably renormalized) discrete
graph Laplacians (∆m)m ∈N on the sequence of prefractal approximations (ΓWm

)m∈N.
In a sense, it is also connected to the existence of the limit

lim
m→∞

∆m

by means of an equivalent pointwise formula expressed in terms of integrals,
somehow the counterpart, in a way, of the one which is well known in the case

of the fractal Laplacian on the Sierpiński Gasket
XVIII

,
XIX

.

XVIII
Jun Kigami. Analysis on Fractals. Cambridge University Press, 2001.

XIX
Robert S. Strichartz. Differential Equations on Fractals, A tutorial. Princeton University

Press, 2006.
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Remark ∼ ii .

The difficulty, in our context, is to obtain an equivalent formulation of the defini-
tion of Besov spaces with the sequence of discrete Laplacians alluded to in part i .
Clearly, a discrete Laplacian corresponds to the usual first difference. Working
with discrete Laplacians, along with atomic decompositions of functions, leads to
expressions of the following form:

lim
m→∞

ε
2m (DW −2) ∑

(T,Y )∈ (Pm ⋃Qm )2,Y ∼mT

µ
L (T ,Pm,Qm) µ

L (Y ,Pm,Qm) λ̃f ,m

»»»»»f̃m(T) − f̃m f (Y )»»»»»
q

dDW +(α−k)q
eucl (T ,Y )

⋅
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Theorem: Characterization of Besov Spaces
XX

Given k ∈ N, k < α ≤ k + 1, p ≥ 1 and q ≥ 1, and a continuous function f given
by means of an atomic decomposition of the form

f = lim
m→∞

∑
X ∈Pm ⋃Qm

λ̃f ,m,X f̃m,X

belongs to the Besov space B
p,q
α (ΓW ) if and only if the following two conditions

are satisfied,

(3 − DW ) {q (1p −
s − 1

DW
)} + (2 − DW ) (DW + (α − 1) q) < 2 , (C ondBesov)

and

DW

3 − DW
+

DW

p ≤ s , (C ondLp) ⋅

XX
Claire David and Michel L. Lapidus. Iterated fractal drums ∼ Some New Perspectives:

Polyhedral Measures, Atomic Decompositions and Morse Theory. 2022.
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Trace of an L
1
loc(R2) Function on the Weierstrass

Curve

Along the lines of
XXI

, page 15, or
XXII

, we will say that an L
1
loc(R2) function f is

strictly defined at a vertex X of the Weierstrass Curve if the following limit exists
and is given by

f̄ (X ) = lim
m→∞

1

µL (X ,Pm,Qm)
∑
Y∼X

f (Y ) < ∞⋅

This enables us to define the trace f∣ΓW
of the function f on the Weierstrass Curve,

via

∀X ∈ ΓW ∶ f∣ΓW
(X) = f̄ (X) ⋅

The trace f̄ of an L
1
loc(R2) function thus naturally admits an atomic decomposition.

XXI
Alf Jonsson and Hans Wallin. Function Spaces on Subsets of R

n
. Mathematical Reports,

Vol. II, Part 1. Harwood Academic Publishers, London, 1984.
XXII

Hans Wallin. “The trace to the boundary of Sobolev spaces on a snowflake”. In:
manuscripta math. 73 (1991), pp. 117–125.
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Associated Sobolev Space

We set

mW = min
t ∈ [0,1]

W (t) , MW = max
t ∈ [0,1]

W (t) , ΩW = [0, 1] × [mW ,MW ] ⋅

Then,

ΓW ⊂ ΩW ⊂ R2
,

and, given k ∈ N, and p ≥ 1,

W p
k (Ω̊W ) = {f ∈ Lp (Ω̊W ) , ∀α ≤ k , Dα f ∈ Lp (Ω̊W )} ,

where L
p (Ω̊W ) denotes the Lebesgue space of order p on Ω̊W , while, for the multi-

index α ≤ k, D
α
f is the classical partial derivative of order α, interpreted in the

weak sense.
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Theorem: The Trace of Sobolev Spaces as Besov
Spaces (counterpart of the corresponding one

obtained in
XXIII

, Chapter VI)

Given a positive integer k , and a real number p ≥ 1, we set

βk,p = k −
2 − DW

p ⋅

We then have that

W p
k ( Ω̊W )∣ΓW

= Bp,p
β (ΓW ) ⋅

XXIII
Alf Jonsson and Hans Wallin. Function spaces on subsets of Rn

. Mathematical reports
(Chur, Switzerland). Harwood Academic Publishers, 1984.
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Corollary: Order of the Fractal Laplacian

In the case where k = p = 2, provided that

s > 1 + DW
1 − DW + (2 − DW ) (2DW − 3)

2 (3 − DW ) ,

we then have that

W 2
2 (ΩW )∣ΓW

= B2,2
β2,2

(ΓW ) ,

where

β2,2 = 2 −
2 − DW

2
= 2 −

1

2

lnλ

lnNb
> 2 ⋅

Consequently, by analogy with the classical theories, the Laplacian on the Weier-
strass Curve arises as a differential operator of order β2,2 ∈ ]2, 3[.
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Connection with the Optimal Exponent of Hölder
Continuity

We note that

β2,2 = 2 +
αW

2
,

where the Codimension αW = 2 − DW = −
lnλ

lnNb
∈ ]0, 1[ is the best (i.e., op-

timal) Hölder exponent for the Weierstrass function, as was initially obtained by

G. H. Hardy in
XXIV

), and then, by a completely different method – geometrically –

in
XXV

.

XXIV
Godfrey Harold Hardy. “Weierstrass’s Non-Differentiable Function”. In: Transactions of the

American Mathematical Society 17.3 (1916), pp. 301–325.
XXV

Claire David and Michel L. Lapidus. Weierstrass fractal drums - I - A glimpse of complex
dimensions. 2022.
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↝ Nature produces many fractal-like structures. Until now, the tools of fractal
geometry have been little used to model the morphogenesis of these living forms.

↝ The acellular model organism Physarum polycephalum grows in a network
and fractal branched way.

(a) P. polycephalum plasmodium. (b) Vein network.
© A. Dussutour & C. Oettmeier.
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↝ The change of shape in Physarum polycephalum corresponds to a change of
fractal (complex) dimensions (undergoing work with A. Dussutour, H. Henni,
C. Godin).

↝ Just as in our mathematical theory.

↝ What is the growth law?

↝ Can we find the underlying variational principle?
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Forthcoming: The Magnitude

↝ Counterpart of the (topological) Euler characteristic
XXVI

.

↝ New method for numerically determining the Complex Dimensions of a

fractal
XXVII

.

↝ Also connected to the polyhedral measure.

XXVI
Tom Leinster. “The magnitude of metric spaces”. In: Documenta Mathematica 18 (2013),

pp. 857–905. issn: 1431-0635.
XXVII

Claire David and Michel L. Lapidus. Fractal Complex Dimensions ∼ A Bridge to Magnitude.
2023.
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