Iterated Fractal Drums ~ Some New Perspectives:

Polyhedral Measures, Atomic Decompositions

Joint work with Michel L. Lapidus

Claire David

Sorbonne Université - Laboratoire Jacques-Louis Lions
(in. SCIENCES
SORBONNE
UNIVERSITÉ

Introduction

A pathological object

Continuous everywhere, while being nowhere differentiable,".
'Karl Weierstrass. "Über continuirliche Funktionen eines reellen Arguments, die für keinen Werth des letzteren einen bestimmten Differential quotienten besitzen". In: Journal für die reine und angewandte Mathematik 79 (1875), pp. 29-31.
"Godfrey Harold Hardy. "Weierstrass's Non-Differentiable Function". In: Transactions of the American Mathematical Society 17.3 (1916), pp. 301-325.
CI. David (Sorbonne Université - LJLL)

Polyhedral Measures, Atomic decompositions

Minkowski Dimension ${ }^{\text {III }}$, V, V VI:

$$
D_{\mathscr{W}}=2+\frac{\ln \lambda}{\ln b}=2-\ln _{b} \frac{1}{\lambda}
$$

[^0]
Our question:

Can we find

A suitable measure?

I. The Geometric Framework

We hereafter place ourselves in the Euclidean plane of dimension 2, referred to a direct orthonormal frame. The usual Cartesian coordinates are (x, y). The horizontal and vertical axes will be respectively refered to as $\left(x^{\prime} x\right)$ and $\left(y^{\prime} y\right)$.

Notation

In the following, λ and N_{b} are two real numbers such that:

$$
0<\lambda<1 \quad, \quad N_{b} \in \mathbb{N}^{\star} \text { and } \lambda N_{b}>1 .
$$

We consider the Weierstrass function \mathscr{W}, defined, for any real number x, by

$$
\mathscr{W}(x)=\sum_{n=0}^{+\infty} \lambda^{n} \cos \left(2 \pi N_{b}^{n} x\right)
$$

Associated graph: the Weierstrass Curve.

Due to the one-periodicity of the \mathscr{W} function, we restrict our study to the interval $[0,1[$.

Minkowski (or box-counting) Dimension

$$
\boldsymbol{D}_{\mathscr{W}}=2+\frac{\ln \boldsymbol{\lambda}}{\ln \boldsymbol{N}_{b}} \text {, equal to its Hausdorff dimension }{ }^{\mathrm{VII}} \text { VIII } \mathrm{XX} \times
$$

VII James L. Kaplan, John Mallet-Paret, and James A. Yorke. "The Lyapunov dimension of a nowhere differentiable attracting torus". In: Ergodic Theory and Dynamical Systems 4 (1984), pp. 261-281.
VIII Krzysztof Barańsky, Balázs Bárány, and Julia Romanowska. "On the dimension of the graph of the classical Weierstrass function". In: Advances in Mathematics 265 (2014), pp. 791-800.

IX Weixiao Shen. "Hausdorff dimension of the graphs of the classical Weierstrass functions".
In: Mathematische Zeitschrift 289 (1-2 2018), pp. 223-266.
$\mathrm{X}_{\text {Gerhard }}$ Keller. "A simpler proof for the dimension of the graph of the classical Weierstrass function". In: Annales de I'Institut Henri Poincaré - Probabilités et Statistiques 53.1 (2017),
pp. 169-181.
CI. David (Sorbonne Université - LJLL)

The Weierstrass Curve as a Cyclic Curve

In the sequel, we identify the points

$$
(0, \mathscr{W}(0)) \quad \text { and } \quad(1, \mathscr{W}(1))=(1, \mathscr{W}(0)) \cdot
$$

Remark

The above convention makes sense, in so far as the points ($\mathbf{0}, \mathscr{W}(\mathbf{0})$) and ($1, \mathscr{W}(1))$ have the same vertical coordinate, in addition to the periodic properties of the \mathscr{W} function.

Property (Symmetry with respect to the vertical line $x=\frac{1}{2}$)
Since, for any $x \in[0,1]$:

$$
\mathscr{W}(1-x)=\sum_{n=0}^{+\infty} \lambda^{n} \cos \left(2 \pi N_{b}^{n}-2 \pi N_{b}^{n} x\right)=\mathscr{W}(x)
$$

the Weierstrass Curve is symmetric with respect to the vertical straight line $x=\frac{1}{2}$.

Proposition (Nonlinear and Noncontractive Iterated Function System (IFS))

We approximate the restriction $\Gamma_{\mathscr{W}}$ to $[0,1[\times \mathbb{R}$, of the Weierstrass Curve, by a sequence of finite graphs, built through an iterative process, by using the nonlinear iterated function system (IFS) of the family of C^{∞} maps from \mathbb{R}^{2} to \mathbb{R}^{2} denoted by

$$
\mathscr{T}_{\mathscr{W}}=\left\{T_{0}, \cdots, T_{N_{b}-1}\right\},
$$

where, for $0 \leq i \leq N_{b}-1$ and any point (x, y) of \mathbb{R}^{2},

$$
T_{i}(x, y)=\left(\frac{x+i}{N_{b}}, \lambda y+\cos \left(2 \pi\left(\frac{x+i}{N_{b}}\right)\right)\right) .
$$

Property (Attractor of the IFS)

The Weierstrass Curve is the attractor of the IFS $\mathscr{T}_{\mathscr{W}}$: $\Gamma_{\mathscr{W}}=\bigcup_{i=0}^{N_{b}-1} T_{i}\left(\Gamma_{\mathscr{W}}\right)$.

Fixed Points

For any integer i belonging to $\left\{0, \cdots, N_{b}-1\right\}$, we denote by:

$$
P_{i}=\left(x_{i}, y_{i}\right)=\left(\frac{i}{N_{b}-1}, \frac{1}{1-\lambda} \cos \left(\frac{2 \pi i}{N_{b}-1}\right)\right)
$$

the fixed point of the map $\boldsymbol{T}_{\boldsymbol{i}}$.

Sets of vertices, Prefractals

We set: $\boldsymbol{V}_{\mathbf{0}}=\left\{\boldsymbol{P}_{\mathbf{0}}, \cdots, \boldsymbol{P}_{\boldsymbol{N}_{b}-\mathbf{1}}\right\}$, and, for any $m \in \mathbb{N}^{\star}: V_{m}=\bigcup_{i=0}^{N_{b}-1} T_{i}\left(\boldsymbol{V}_{m-1}\right)$.
For $m \in \mathbb{N}$, the set of points V_{m}, where two consecutive points are linked, is an oriented graph (according to increasing abscissa): the $\boldsymbol{m}^{\boldsymbol{t h}}$-order \mathscr{W}-prefractal $\Gamma_{\mathscr{W}_{m}}$.

The Weierstrass IFD

We call Weierstrass Iterated Fractal Drums (IFD) the sequence of prefractal graphs which converge to the Weierstrass Curve.

Adjacent Vertices, Edge Relation

For any natural integer m, the prefractal graph $\Gamma_{\mathscr{W}_{m}}$ is equipped with an edge relation $\underset{m}{\sim}$: two vertices X and Y of $\Gamma_{\mathscr{W}_{m}}$, i.e. two points belonging to V_{m}, will be said to be adjacent (i.e., neighboring or junction points) if and only if the line segment $[X, Y]$ is an edge of $\Gamma_{\mathscr{W}_{m}}$; we then write $X \sim Y$. This edge relation depends on \boldsymbol{m}, which means that points adjacent in V_{m} might not remain adjacent in V_{m+1}.

Property

For any natural integer m, we have that
i. $V_{m} \subset V_{m+1}$.
ii. $\# V_{m}=\left(N_{b}-1\right) N_{b}^{m}+1$.

iii. The prefractal graph $\Gamma_{\mathscr{W}_{m}}$ has exactly $\left(N_{b}-1\right) N_{b}^{m}$ edges.
iv. The consecutive vertices of the prefractal graph $\Gamma_{\mathscr{W}_{m}}$ are the vertices of N_{b}^{m} simple polygons $\mathscr{P}_{m, k}$ with N_{b} sides. For $m \in \mathbb{N}$, the junction point between two consecutive polygons is the point

$$
\left(\frac{\left(N_{b}-1\right) k}{\left(N_{b}-1\right) N_{b}^{m}}, \mathscr{W}\left(\frac{\left(N_{b}-1\right) k}{\left(N_{b}-1\right) N_{b}^{m}}\right)\right) \quad, \quad 1 \leq k \leq N_{b}^{m}-1
$$

The total number of junction points is thus $N_{b}^{m}-1$.
For instance, in the case $N_{b}=3$, one gets triangles.
In the sequel, we will denote by \mathscr{P}_{0} the initial polygon, i.e. the one whose vertices are the fixed points of the maps $T_{i}, 0 \leq i \leq N_{b}-1$.

The polygons, in the case where $\lambda=\frac{1}{2}$, and $N_{b}=3$.

The polygons, in the case where $\lambda=\frac{1}{2}$, and $N_{b}=7$.

$\boldsymbol{m}=\mathbf{0}$

$m=1$

The prefractal graphs $\Gamma_{W_{0}}, \Gamma_{W_{1}}, \Gamma_{W_{2}}, \Gamma_{W_{3}}$, in the case where $\lambda=\frac{1}{2}$, and $N_{b}=3$.

The prefractal graphs $\Gamma_{W_{0}}, \Gamma_{W_{1}}, \Gamma_{W_{2}}, \Gamma_{W_{3}}$, in the case where $\lambda=\frac{1}{2}$, and $N_{b}=4$.

The prefractal graphs $\Gamma_{\mathscr{W}_{0}}, \Gamma_{\mathscr{W}_{1}}, \Gamma_{\mathscr{W}_{2}}, \Gamma_{\mathscr{W}_{3}}$, in the case where $\lambda=\frac{1}{2}$, and $N_{b}=7$.

Vertices of the Prefractals, Elementary Lengths, and Heights

Given $m \in \mathbb{N}$, we denote by $\left(\boldsymbol{M}_{\boldsymbol{j}, \boldsymbol{m}}\right)_{0 \leq j \leq\left(N_{b}-1\right) N_{b}^{m}-1}$ the set of vertices of the prefractal graph $\Gamma_{\mathscr{W}_{m}}$. One thus has, for any integer j in $\left\{0, \cdots,\left(N_{b}-1\right) N_{b}^{m}-1\right\}$:

$$
M_{j, m}=\left(\frac{j}{\left(N_{b}-1\right) N_{b}^{m}}, \mathscr{W}\left(\frac{j}{\left(N_{b}-1\right) N_{b}^{m}}\right)\right) .
$$

We also introduce, for $0 \leq j \leq\left(N_{b}-1\right) N_{b}^{m}-2$:
i. the elementary horizontal lengths:

$$
L_{m}=\frac{1}{\left(N_{b}-1\right) N_{b}^{m}}
$$

ii. the elementary lengths:

$$
\ell_{j, j+1, m}=d\left(M_{j, m}, M_{j+1, m}\right)=\sqrt{L_{m}^{2}+h_{j, j+1, m}^{2}}
$$

iii. the elementary heights:

$$
h_{j, j+1, m}=\left|\mathscr{W}\left(\frac{j+1}{\left(N_{b}-1\right) N_{b}^{m}}\right)-\mathscr{W}\left(\frac{j}{\left(N_{b}-1\right) N_{b}^{m}}\right)\right|
$$

iv. the geometric angles:

$$
\theta_{j-1, j, m}=\left(\left(y^{\prime} y\right),\left(\widehat{M_{j-1, m}} M_{j, m}\right)\right) \quad, \quad \theta_{j, j+1, m}=\left(\left(y^{\prime} y\right),\left(\widetilde{\left.\left.M_{j, m} M_{j+1, m}\right)\right), ~}\right.\right.
$$

which yield the value of the geometric angle between consecutive edges

$$
\left[M_{j-1, m} M_{j, m}, M_{j, m} M_{j+1, m}\right]:
$$

$$
\theta_{j-1, j, m}+\theta_{j, j+1, m}=\arctan \frac{L_{m}}{\left|h_{j-1, j, m}\right|}+\arctan \frac{L_{m}}{\left|h_{j, j+1, m}\right|} .
$$

Property (Scaling Properties of the Weierstrass Function, and Consequences)

Since, for any real number x

$$
\mathscr{W}(x)=\sum_{n=0}^{+\infty} \lambda^{n} \cos \left(2 \pi N_{b}^{n} x\right)
$$

one also has

$$
\mathscr{W}\left(N_{b} x\right)=\sum_{n=0}^{+\infty} \lambda^{n} \cos \left(2 \pi N_{b}^{n+1} x\right)=\frac{1}{\lambda} \sum_{n=1}^{+\infty} \lambda^{n} \cos \left(2 \pi N_{b}^{n} x\right)=\frac{1}{\lambda}\{\mathscr{W}(x)-\cos (2 \pi x)\}
$$

which yield, for any strictly positive integer m, and any j in $\left\{0, \cdots, \# V_{m}\right\}$:

$$
\mathscr{W}\left(\frac{j}{\left(N_{b}-1\right) N_{b}^{m}}\right)=\lambda \mathscr{W}\left(\frac{j}{\left(N_{b}-1\right) N_{b}^{m-1}}\right)+\cos \left(\frac{2 \pi j}{\left(N_{b}-1\right) N_{b}^{m-1}}\right)
$$

By induction, one obtains that

$$
\mathscr{W}\left(\frac{j}{\left(N_{b}-1\right) N_{b}^{m}}\right)=\lambda^{m} \mathscr{W}\left(\frac{j}{\left(N_{b}-1\right)}\right)+\sum_{k=0}^{m-1} \lambda^{k} \cos \left(\frac{2 \pi N_{b}^{k} j}{\left(N_{b}-1\right) N_{b}^{m}}\right) .
$$

A Consequence of the Symmetry with respect to the Vertical

Line $x=\frac{1}{2}$

For any strictly positive integer m and any j in $\left\{0, \cdots, \# V_{m}\right\}$, we have that

$$
\mathscr{W}\left(\frac{j}{\left(N_{b}-1\right) N_{b}^{m}}\right)=\mathscr{W}\left(\frac{\left(N_{b}-1\right) N_{b}^{m}-j}{\left(N_{b}-1\right) N_{b}^{m}}\right)
$$

which means that the points

$$
\left(\frac{\left(N_{b}-1\right) N_{b}^{m}-j}{\left(N_{b}-1\right) N_{b}^{m}}, \mathscr{W}\left(\frac{\left(N_{b}-1\right) N_{b}^{m}-j}{\left(N_{b}-1\right) N_{b}^{m}}\right)\right) \quad \text { and } \quad\left(\frac{j}{\left(N_{b}-1\right) N_{b}^{m}}, \mathscr{W}\left(\frac{j}{\left(N_{b}-1\right) N_{b}^{m}}\right)\right)
$$

are symmetric with respect to the vertical line $x=\frac{1}{2}$.

Property

i. For $\mathbf{0} \leq \boldsymbol{j} \leq \frac{\left(\mathbf{N}_{\boldsymbol{b}}-\mathbf{1}\right)}{2}$: $\quad \mathscr{W}\left(\frac{j+1}{N_{b}-1}\right)-\mathscr{W}\left(\frac{j}{N_{b}-1}\right) \leq 0$.
ii. For $\frac{\left(N_{\boldsymbol{b}}-1\right)}{2} \leq \boldsymbol{j} \leq \boldsymbol{N}_{\boldsymbol{b}}-\mathbf{1}$: $\mathscr{W}\left(\frac{j+1}{N_{b}-1}\right)-\mathscr{W}\left(\frac{j}{N_{b}-1}\right) \geq 0$.

Property

Given a strictly positive integer m :
i. For any j in $\left\{0, \cdots, \# V_{m}\right\}$, the point

$$
\left(\frac{j}{\left(N_{b}-1\right) N_{b}^{m}} \mathscr{W}\left(\frac{j}{\left(N_{b}-1\right) N_{b}^{m}}\right)\right)
$$

is the image of the point

$$
\left(\frac{j}{\left(N_{b}-1\right) N_{b}^{m-1}}-i, \mathscr{W}\left(\frac{j}{\left(N_{b}-1\right) N_{b}^{m-1}}-i\right)\right)=\left(\frac{j-i\left(N_{b}-1\right) N_{b}^{m-1}}{\left(N_{b}-1\right) N_{b}^{m-1}}, \mathscr{W}\left(\frac{j-i\left(N_{b}-1\right) N_{b}^{m-1}}{\left(N_{b}-1\right) N_{b}^{m-1}}\right)\right)
$$

by the map $T_{i}, 0 \leq i \leq N_{b}-1$.

As a consequence, the $\boldsymbol{j}^{\boldsymbol{t h}}$ vertex of the polygon $\mathscr{P}_{m, k}, 0 \leq k \leq N_{b}^{m}-1$, $0 \leq j \leq N_{b}-1$, i.e. the point:

$$
\left(\frac{\left(N_{b}-1\right) k+j}{\left(N_{b}-1\right) N_{b}^{m}}, \mathscr{W}\left(\frac{\left(N_{b}-1\right) k+j}{\left(N_{b}-1\right) N_{b}^{m}}\right)\right)
$$

is the image of the point

$$
\left(\frac{\left(N_{b}-1\right)\left(k-i\left(N_{b}-1\right) N_{b}^{m-1}\right)+j}{\left(N_{b}-1\right) N_{b}^{m-1}}, \mathscr{W}\left(\frac{\left(N_{b}-1\right)\left(k-i\left(N_{b}-1\right) N_{b}^{m-1}\right)+j}{\left(N_{b}-1\right) N_{b}^{m-1}}\right)\right)
$$

i.e. is the the $\boldsymbol{j}^{\boldsymbol{t h}}$ vertex of the polygon $\mathscr{P}_{m-1, k-i\left(N_{b}-1\right) N_{b}^{m-1}}$.

There is thus an exact correspondence between vertices of the polygons at consecutive steps $m-1, m$.
ii. Given j in $\left\{0, \cdots, N_{b}-2\right\}$, and k in $\left\{0, \cdots, N_{b}^{m}-1\right\}$:

$$
\operatorname{sign}\left(\mathscr{W}\left(\frac{k\left(N_{b}-1\right)+j+1}{\left(N_{b}-1\right) N_{b}^{m}}\right)-\mathscr{W}\left(\frac{k\left(N_{b}-1\right)+j}{\left(N_{b}-1\right) N_{b}^{m}}\right)\right)=\operatorname{sign}\left(\mathscr{W}\left(\frac{j+1}{N_{b}-1}\right)-\mathscr{W}\left(\frac{j}{N_{b}-1}\right)\right) .
$$

Bounding Result: Upper and Lower Bounds for the Elementary Heights

For any strictly positive integer m, and any j in $\left\{0, \cdots,\left(N_{b}-1\right) N_{b}^{m}\right\}$, we have that

$$
C_{i n f} \underbrace{\lambda^{m}}_{N_{b}^{m\left(D_{\mathscr{W}}-2\right)}} \leq\left|\mathscr{W}\left(\frac{j+1}{\left(N_{b}-1\right) N_{b}^{m}}\right)-\mathscr{W}\left(\frac{j}{\left(N_{b}-1\right) N_{b}^{m}}\right)\right| \leq C_{\text {sup }} \underbrace{\lambda^{m}}_{N_{b}^{m\left(D_{\mathscr{W}}-2\right)}}
$$

where

$$
C_{i n f}=\left(N_{b}-1\right)^{2-D_{\mathscr{W}}} \min _{0 \leq j \leq N_{b}-1}\left|\mathscr{W}\left(\frac{j+1}{N_{b}-1}\right)-\mathscr{W}\left(\frac{j}{N_{b}-1}\right)\right|
$$

and

$$
C_{\text {sup }}=\left(N_{b}-1\right)^{2-D \mathscr{W}}\left(\max _{0 \leq j \leq N_{b}-1}\left|\mathscr{W}\left(\frac{j+1}{N_{b}-1}\right)-\mathscr{W}\left(\frac{j}{N_{b}-1}\right)\right|+\frac{2 \pi}{\left(N_{b}-1\right)\left(\lambda N_{b}-1\right)}\right) .
$$

These constants depend on the initial polygon \mathscr{P}_{0}.

Theorem: Sharp Local Discrete Reverse Hölder Properties of the Weierstrass Function

For any natural integer m, and any pair of real numbers $\left(x, x^{\prime}\right)$ such that:

$$
x=\frac{\left(N_{b}-1\right) k+j}{\left(N_{b}-1\right) N_{b}^{m}}=\left(\left(N_{b}-1\right) k+j\right) L_{m} \quad, \quad x^{\prime}=\frac{\left(N_{b}-1\right) k+j+\ell}{\left(N_{b}-1\right) N_{b}^{m}}=\left(\left(N_{b}-1\right) k+j+\ell\right) L_{m}
$$

where $0 \leq k \leq N_{b}-1^{m}-1$, and
i. if the integer N_{b} is odd,

$$
\begin{gathered}
0 \leq j<\frac{N_{b}-1}{2} \quad \text { and } \quad 0<j+\ell \leq \frac{N_{b}-1}{2} \\
\text { or } \quad \frac{N_{b}-1}{2} \leq j<N_{b}-1 \quad \text { and } \quad \frac{N_{b}-1}{2}<j+\ell \leq N_{b}-1 ;
\end{gathered}
$$

ii. if the integer N_{b} is even,

$$
\begin{gathered}
0 \leq j<\frac{N_{b}}{2} \quad \text { and } \quad 0<j+\ell \leq \frac{N_{b}}{2} \\
\text { or } \frac{N_{b}}{2}+1 \leq j<N_{b}-1 \quad \text { and } \quad \frac{N_{b}}{2}+1<j+\ell \leq N_{b}-1
\end{gathered}
$$

This means that the points $(x, \mathscr{W}(x))$ and $\left(x^{\prime}, \mathscr{W}\left(x^{\prime}\right)\right)$ are vertices of the polygon $\mathscr{P}_{\boldsymbol{m}, \boldsymbol{k}}$ both located on the left-side of the polygon, or on the right-side. Then, one has the following reverse-Hölder inequality, with sharp Hölder exponent $-\frac{\ln \lambda}{\ln N_{b}}=2-D_{\mathscr{W}}$,

$$
C_{i n f}\left|x^{\prime}-x\right|^{2-D_{\mathscr{W}}} \leq\left|\mathscr{W}\left(x^{\prime}\right)-\mathscr{W}(x)\right| .
$$

Corollary

One may now write, for any $m \in \mathbb{N}^{\star}$, and $0 \leq j \leq\left(N_{b}-1\right) N_{b}^{m}-1$:
i. for the elementary heights:

$$
h_{j-1, j, m}=L_{m}^{2-D_{\mathscr{W}}} \mathscr{O}(1)
$$

ii. for the elementary quotients:

$$
\frac{h_{j-1, j, m}}{L_{m}}=L_{m}^{1-D_{\mathscr{W}}} \mathscr{O}(1)
$$

where:

$$
0<C_{\text {inf }} \leq \mathscr{O}(1) \leq C_{\text {sup }}<\infty .
$$

II. Polyhedral Measure

m
 ${ }^{\text {th }}$ Cohomology Infinitesimal

Given any $m \in \mathbb{N}$, we will call $m^{\text {th }}$ cohomology infinitesimal the number

$$
\varepsilon_{m}^{m}=\frac{1}{N_{b}-1} \frac{1}{N_{b}^{m}} \underset{m \rightarrow \infty}{\rightarrow} 0
$$

Note that this $m^{t h}$ cohomology infinitesimal is the one naturally associated to the scaling relation of \mathscr{W}.

Polygonal Sets

For any $m \in \mathbb{N}$, the consecutive vertices of the prefractal graph $\Gamma_{\mathscr{W}_{m}}$ are the vertices of N_{b}^{m} simple polygons $\mathscr{P}_{m, k}$ with N_{b} sides. We now introduce the polygonal sets

$$
\mathscr{P}_{m}=\left\{\mathscr{P}_{m, k}, 0 \leq k \leq N_{b}^{m}-1\right\} \quad \text { and } \quad \mathscr{Q}_{m}=\left\{\mathscr{Q}_{m, k}, 0 \leq k \leq N_{b}^{m}-2\right\} .
$$

Notation

For any $m \in \mathbb{N}$, we denote by:
ii. $X \in \mathscr{P}_{m}$ (resp., $X \in \mathscr{Q}_{m}$) a vertex of a polygon $\mathscr{P}_{m, k}$, with $0 \leq k \leq N_{b}^{m}-1$ (resp., a vertex of a polygon $\mathscr{Q}_{m, k}$, with $\left.1 \leq k \leq N_{b}^{m}-2\right)$.
ii. $\mathscr{P}_{m} \bigcup \mathscr{Q}_{m}$ the reunion of the polygonal sets \mathscr{P}_{m} and \mathscr{Q}_{m}, which consists in the set of all the vertices of the polygons $\mathscr{P}_{m, k}$, with $0 \leq k \leq N_{b}^{m}-1$, along with the vertices of the polygons $\mathscr{Q}_{m, k}$, with $1 \leq k \leq N_{b}^{m}-2$. In particular, $X \in \mathscr{P}_{m} \bigcup \mathscr{Q}_{m}$ simply denotes a vertex in \mathscr{P}_{m} or \mathscr{Q}_{m}.
iii. $\quad \mathscr{P}_{m} \bigcap \mathscr{Q}_{m}$ the intersection of the polygonal sets \mathscr{P}_{m} and \mathscr{Q}_{m}, which consists in the set of all the vertices of both a polygon $\mathscr{P}_{m, k}$, with $0 \leq k \leq N_{b}^{m}-1$, and a polygon $\mathscr{Q}_{m, k^{\prime}}$, with $1 \leq^{\prime} k \leq N_{b}^{m}-2$.

Power of a Vertex

Given $m \in \mathbb{N}^{\star}$, a vertex X of $\Gamma_{\mathscr{W}_{m}}$ is said:
i. of power one relative to the polygonal family \mathscr{P}_{m} if X belongs to (or is a vertex of) one and only one N_{b}-gon $\mathscr{P}_{m, j}$, for $0 \leq j \leq N_{b}^{m}-1$;
ii. of power $\frac{1}{2}$ relative to the polygonal family \mathscr{P}_{m} if X is a common vertex to two consecutive N_{b}-gons $\mathscr{P}_{m, j}$ and $\mathscr{P}_{m, j+1}$, for $0 \leq j \leq N_{b}^{m}-2$;
iii. of power zero reative to the polygonal family \mathscr{P}_{m} if X does not belong to (or is not a vertex of) any N_{b}-gon $\mathscr{P}_{m, j}$, for $0 \leq j \leq N_{b}^{m}-1$.

Similarly, given $m \in \mathbb{N}$, a vertex X of $\Gamma_{\mathscr{W}_{m}}$ is said:
i. of power one relative to the polygonal family \mathscr{Q}_{m} if X belongs to (or is a vertex of) one and only one N_{b}-gon $\mathscr{P}_{m, j}$, for $0 \leq j \leq N_{b}^{m}-2$;
ii. of power $\frac{1}{2}$ relative to the polygonal family \mathscr{P}_{m} if X is a common vertex to two consecutive N_{b}-gons $\mathscr{Q}_{m, j}$ and $\mathscr{Q}_{m, j+1}$, for $0 \leq j \leq N_{b}^{m}-3$;
iii. of power zero reative to the polygonal family \mathscr{P}_{m} if X does not belong to (or is not a vertex of) any N_{b}-gon $\mathscr{Q}_{m, j}$, for $0 \leq j \leq N_{b}^{m}-2$.

Sequence of Domains Delimited by the \mathscr{W} IFD

We introduce the sequence of domains delimited by the Weierstrass IFD as the sequence $\left(\mathscr{D}\left(\Gamma_{\mathscr{W}_{m}}\right)\right)_{m \in \mathbb{N}}$ of open, connected polygonal sets $\left(\mathscr{P}_{m} \cup \mathscr{Q}_{m}\right)_{m \in \mathbb{N}}$, where, for each $m \in \mathbb{N}, \mathscr{P}_{m}$ and \mathscr{Q}_{m} respectively denote the polygonal sets introduced just above.

$$
\mathscr{D}\left(\Gamma_{W_{2}}\right) \text { and } \mathscr{D}\left(\Gamma_{W_{3}}\right) \text {, for } \lambda=\frac{1}{2} \text { and } N_{b}=3 .
$$

Domain Delimited by the Weierstrass IFD

We call domain, delimited by the Weierstrass IFD, the set, which is equal to the following limit,

$$
\mathscr{D}\left(\Gamma_{\mathscr{W}}\right)=\lim _{m \rightarrow \infty} \mathscr{D}\left(\Gamma_{\mathscr{W}_{m}}\right),
$$

where the convergence is interpreted in the sense of the Hausdorff metric on \mathbb{R}^{2}. In fact, we have that

$$
\mathscr{D}\left(\boldsymbol{\Gamma}_{\mathscr{W}}\right)=\boldsymbol{\Gamma}_{\mathscr{W}} \cdot
$$

Notation (Lebesgue Measure (on $\left.\mathbb{R}^{2}\right)$)

In the sequel, we denote by $\mu_{\mathscr{L}}$ the Lebesgue measure on \mathbb{R}^{2}.

Notation

For any $m \in \mathbb{N}$, and any vertex X of V_{m}, we set:

Property

We set

$$
m_{\mathscr{W}}=\min _{t \in[0,1]} \mathscr{W}(t) \quad, \quad M_{\mathscr{W}}=\max _{t \in[0,1]} \mathscr{W}(t)
$$

Given a continuous function u on $[0,1] \times\left[m_{\mathscr{W}}, M_{\mathscr{W}}\right]$, we have that, for any $m \in \mathbb{N}$, and any vertex X of V_{m} :

$$
\left|\mu^{\mathscr{L}}\left(X, \mathscr{P}_{m}, \mathscr{Q}_{m}\right) u(X)\right| \leq \mu^{\mathscr{L}}\left(X, \mathscr{P}_{m}, \mathscr{Q}_{m}\right)\left(\max _{[0,1] \times\left[m_{\mathscr{W}}, M_{\mathscr{W}}\right]}|u|\right) \leqslant N_{b}^{-\left(3-D_{\mathscr{W}}\right) m} .
$$

Consequently, we have that

$$
\varepsilon_{m}^{m\left(D_{\mathscr{W}}-2\right)}\left|\mu^{\mathscr{L}}\left(X, \mathscr{P}_{m}, \mathscr{Q}_{m}\right) \boldsymbol{u}(X)\right| \lesssim \varepsilon_{m}^{-m}
$$

Since the sequence $\left(\sum_{x \in \mathscr{P}_{\boldsymbol{m}} \cup \mathscr{Q}_{\boldsymbol{m}}} \varepsilon_{\boldsymbol{m}}^{-\boldsymbol{m}}\right)_{\boldsymbol{m} \in \mathbb{N}}$ is a positive and increasing sequence
(the number of vertices involved increases as \boldsymbol{m} increases), this ensures the existence of the finite limit

$$
\lim _{m \rightarrow \infty} \varepsilon_{m}^{m\left(D_{\mathscr{W}}-2\right)} \sum_{x \in \mathscr{P}_{m} \cup \mathscr{Q}_{m}} \mu^{\mathscr{L}}\left(X, \mathscr{P}_{m}, \mathscr{Q}_{m}\right) u(X) \cdot
$$

Proof

For any $m \in \mathbb{N}$, and any vertex X of V_{m}, we have that

$$
\mu^{\mathscr{L}}\left(X, \mathscr{P}_{m}, \mathscr{Q}_{m}\right) \leqslant \varepsilon_{m}^{m\left(D_{\mathscr{W}}-3\right)} \quad \text { and } \quad \mu^{\mathscr{L}}\left(X, \mathscr{P}_{m}, \mathscr{Q}_{m}\right) \leqslant \varepsilon_{m}^{m\left(D_{\mathscr{W}}-3\right)} .
$$

The total number of polygons \mathscr{P}_{m} is N_{b}^{m}, while the total number of polygons \mathscr{Q}_{m} is equal to $N_{b}^{m}-1$. We then have that

$$
\sum_{X \in \mathscr{P}_{m} \cup \mathscr{Q}_{m}} \mu^{\mathscr{L}}\left(X, \mathscr{P}_{m}, \mathscr{Q}_{m}\right) \lesssim \varepsilon_{m}^{m\left(2-D_{\mathscr{W}}\right)}
$$

which, as desired, ensures the existence of the finite limit

$$
\left(\max _{[0,1] \times\left[m_{\mathscr{W}}, M_{\mathscr{W}}\right]}|u|\right) \lim _{m \rightarrow \infty} \varepsilon_{m}^{m\left(D_{\mathscr{W}}-2\right)} \sum_{X \in \mathscr{P}_{m} \cup \mathscr{Q}_{m}} \mu^{\mathscr{L}}\left(X, \mathscr{P}_{m}, \mathscr{Q}_{m}\right) .
$$

Polyhedral Measure on the Weierstrass IFD

We introduce the polyhedral measure on the Weierstrass IFD, denoted by μ, such that for any continuous function u on the Weierstrass Curve,

$$
\int_{\Gamma_{\mathscr{W}}} u d \mu=\lim _{m \rightarrow \infty} \varepsilon_{m}^{m\left(D_{\mathscr{W}}-2\right)} \sum_{x \in \mathscr{P}_{m} \cup \mathscr{Q}_{m}} \mu^{\mathscr{L}}\left(X, \mathscr{P}_{m}, \mathscr{Q}_{m}\right) u(X),
$$

which can also be understood in the following way,

$$
\int_{\Gamma_{\mathscr{W}}} u d \mu=\int_{\mathscr{D}\left(\Gamma_{W}\right)} u d \mu .
$$

Theorem - I

The polyhedral measure μ is well defined, positive, as well as a bounded, nonzero, Borel measure on $\mathscr{D}\left(\Gamma_{\mathscr{W}}\right)$. The associated total mass is given by

$$
\mu\left(\mathscr{D}\left(\Gamma_{\mathscr{W}}\right)\right)=\lim _{m \rightarrow \infty} \varepsilon_{m}^{m\left(D_{\mathscr{W}}-2\right)} \sum_{X \in \mathscr{\mathscr { P }}_{m} \cup \mathscr{Q}_{m}} \mu^{\mathscr{L}}\left(X, \mathscr{P}_{m}, \mathscr{Q}_{m}\right), \quad(\star \star)
$$

and satisfies the following estimate:

$$
\mu\left(\mathscr{D}\left(\Gamma_{\mathscr{W}}\right)\right) \leq \frac{2}{N_{b}}\left(N_{b}-1\right)^{2} C_{\text {sup }} \cdot \quad(\star \star \star)
$$

Furthermore, the support of μ coincides with the entire curve:

$$
\operatorname{supp} \mu=\mathscr{D}\left(\Gamma_{\mathscr{W}}\right)=\Gamma_{\mathscr{W}} .
$$

Theorem - II

In addition, μ is the weak limit as $m \rightarrow \infty$ of the following discrete measures (or Dirac Combs), given, for each $m \in \mathbb{N}$, by

$$
\mu_{m}=\varepsilon_{m}^{m\left(D_{\mathscr{W}}-2\right)} \sum_{X \in \mathscr{P}_{m} \cup \mathscr{Q}_{m}} \mu^{\mathscr{L}}\left(X, \mathscr{P}_{m}, \mathscr{Q}_{m}\right) \delta_{X},
$$

where ε denotes the cohomology infinitesimal, and δ_{X} the Dirac measure concentrated at X.

Proof $\sim i . \mu$ is a well defined measure.

Indeed, the map φ

$$
u \mapsto \varphi(u)=\int_{\Gamma_{\mathscr{W}}} u d \mu
$$

is a well defined linear functional on the space $C\left(\Gamma_{\mathscr{W}}\right)$ of real-valued, continuous functions on $\Gamma_{\mathscr{W}}$. Hence, by a well-known argument, it is a continuous linear functional on $C\left(\Gamma_{\mathscr{W}}\right)$, equipped with the sup norm. Since $\Gamma_{\mathscr{W}}$ is compact, and in light of its definition, μ is a bounded, Radon measure, with total mass $\varphi(1)=\mu\left(\mathscr{D}\left(\Gamma_{\mathscr{W}}\right)\right)$, also given by $(\star \star)$, and where 1 denotes the constant function equal to 1 on $\Gamma_{\mathscr{W}}$. Then, according to the Riesz representation theorem, the associated positive Borel measure (still denoted by μ) is a bounded and positive Borel measure with the same total mass $\mu\left(\mathscr{D}\left(\Gamma_{\mathscr{W}}\right)\right)=\mu\left(\Gamma_{\mathscr{W}}\right)$.

Proof ~ ii. The nonzero measure - Estimates for the total mass of μ

For $0 \leq j \leq N_{b}^{m}-1$, each polygon $\mathscr{P}_{m, j}$ is contained in a rectangle of height at most equal to $\left(N_{b}-1\right) h_{m}$, and of width at most equal to $\left(N_{b}-1\right) L_{m}$. This ensures that the Lebesgue measure of each polygon $\mathscr{P}_{m, j}$ is at most equal to $\left(N_{b}-1\right)^{2} h_{m} L_{m}$. We also have the following estimate

$$
h_{m} \leq C_{s u p} L_{m}^{2-D_{\mathscr{W}}}
$$

where

$$
C_{\text {sup }}=\left(N_{b}-1\right)^{2-D \mathscr{W}}\left(\max _{0 \leq j \leq N_{b}-1}\left|\mathscr{W}\left(\frac{j+1}{N_{b}-1}\right)-\mathscr{W}\left(\frac{j}{N_{b}-1}\right)\right|+\frac{2 \pi}{\left(N_{b}-1\right)\left(\lambda N_{b}-1\right)}\right) .
$$

Consequently:

$$
\mu_{\mathscr{L}}\left(\mathscr{P}_{m, j}\right) \leq\left(N_{b}-1\right)^{2} C_{\text {sup }} L_{m}^{3-D_{\mathscr{W}}} \quad, \quad \mu_{\mathscr{L}}\left(\mathscr{Q}_{m, j}\right) \leq\left(N_{b}-1\right)^{2} C_{\text {sup }} L_{m}^{3-D_{\mathscr{W}}} .
$$

We then deduce that, for any vertex X of V_{m},

$$
\mu\left(X, \mathscr{P}_{m}, \mathscr{Q}_{m}\right) \leq \frac{1}{N_{b}}\left(N_{b}-1\right)^{2} C_{\text {sup }} L_{m}^{3-D_{\text {w }}} .
$$

Hence, since the total number of polygons involved is at most equal to $2 N_{b}^{m}-1 \leq 2 N_{b}^{m}$, we can deduce that

$$
\sum_{X \in \mathscr{P}_{m} \cup \mathscr{Q}_{m}} \mu^{\mathscr{L}}\left(X, \mathscr{P}_{m}, \mathscr{Q}_{m}\right) \leq 2 \frac{\varepsilon_{m}^{-m}}{N_{b}}\left(N_{b}-1\right)^{2} C_{\text {sup }} \varepsilon_{m}^{m\left(3-D_{\mathscr{W}}\right)} .
$$

We then have that

$$
\varepsilon_{m}^{m\left(D_{\mathscr{W}}-2\right)} \sum_{x \in \mathscr{\mathscr { P }}_{m} \cup \mathscr{Q}_{m}} \mu^{\mathscr{L}}\left(X, \mathscr{P}_{m}, \mathscr{Q}_{m}\right) \leq \frac{2}{N_{b}}\left(N_{b}-1\right)^{2} C_{\text {sup }}<\infty,
$$

from which we can deduce that the polyhedral measure is a bounded measure.

For the sake of simplicity, we restrict ourselves to the case when $N_{b}<7$. For $0 \leq j \leq N_{b}^{m}-1$, each polygon $\mathscr{P}_{m, j}$ (which is convex) contains an inscribed circle, whose Lebesgue measure is greater than $\frac{h_{m}^{\text {inf }} \varepsilon_{m}^{m}}{C_{N_{b}}}$, where

$$
h_{m}^{i n f}=\inf _{0 \leq j \leq\left(N_{b}-1\right) N_{b}^{m}-1} h_{j, j+1, m}
$$

and where $C_{N_{b}}>0$.

We recall that

$$
C_{\text {inf }} \varepsilon_{m}^{m\left(2-D_{\mathscr{W}}\right)} \leq h_{m}^{\text {inf }}, \text { where } C_{i n f}=\left(N_{b}-1\right)^{2-D_{\mathscr{W}}} \min _{0 \leq j \leq N_{b}-1}\left|\mathscr{W}\left(\frac{j+1}{N_{b}-1}\right)-\mathscr{W}\left(\frac{j}{N_{b}-1}\right)\right|>0 .
$$

Consequently,
$\mu_{\mathscr{L}}\left(\mathscr{P}_{m, j}\right) \geq \frac{h_{m}^{\text {inf }} \varepsilon_{m}^{m}}{C_{N_{b}}} \geq \frac{C_{i n f} \varepsilon_{m}^{m\left(3-D_{\mathscr{W}}\right)}}{C_{N_{b}}} \quad, \quad \mu_{\mathscr{L}}\left(\mathscr{Q}_{m, j}\right) \geq \frac{h_{m}^{\text {inf }} \varepsilon_{m}^{m}}{C_{N_{b}}} \geq \frac{C_{i n f} \varepsilon_{m}^{m\left(3-D_{\mathscr{W}}\right)}}{C_{N_{b}}}$

We then deduce that, for any vertex X of V_{m},

$$
\mu\left(X, \mathscr{P}_{m}, \mathscr{Q}_{m}\right) \geq \frac{1}{N_{b}} \frac{C_{i n f} \varepsilon_{m}^{m\left(3-D_{W}\right)}}{C_{N_{b}}} .
$$

Hence, since the total number of polygons involved is greater than $N_{b}^{m}-1 \geq \frac{N_{b}^{m}}{2}$, we can deduce that

$$
\sum_{x \in \mathscr{P}_{m} \cup \mathscr{Q}_{m}} \mu^{\mathscr{L}}\left(X, \mathscr{P}_{m}, \mathscr{Q}_{m}\right) \geq \frac{\varepsilon_{m}^{-m}}{2\left(N_{b}-1\right)} \frac{C_{i n f} \varepsilon_{m}^{m\left(3-D_{\mathscr{W}}\right)}}{N_{b} C_{N_{b}}} .
$$

We then have that

$$
\varepsilon_{m}^{m\left(D_{\mathscr{W}}-2\right)} \sum_{x \in \mathscr{\mathscr { P }}_{m} \cup \mathscr{Q}_{m}} \mu^{\mathscr{L}}\left(X, \mathscr{P}_{m}, \mathscr{Q}_{m}\right) \geq \frac{1}{2\left(N_{b}-1\right)} \frac{C_{i n f}}{N_{b} C_{N_{b}}}>0,
$$

from which, upon passing to the limit when $m \rightarrow \infty$, we can deduce that the polyhedral measure is a nonzero measure, and that its total mass satisfies inequality ($\star \star \star$).

Proof ~ iii. Supp $\mu=\Gamma_{\mathscr{W}}$

This simply comes from the proof given in ii. just above that the measure μ is nonzero. If $u \in C\left(\Gamma_{\mathscr{W}}, \mathbb{R}^{+}\right)$, we have that

$$
\varepsilon_{m}^{m\left(D_{\mathscr{W}}-2\right)} \sum_{X \in \mathscr{P}_{m} \cup \mathscr{Q}_{m}} \mu^{\mathscr{L}}\left(X, \mathscr{P}_{m}, \mathscr{Q}_{m}\right) u(X) \geq \frac{1}{2\left(N_{b}-1\right)} \frac{C_{i n f}}{N_{b} C_{N_{b}}}\left(\min _{\Gamma \mathscr{W}} u\right)>0 .
$$

Hence, upon passing to the limit when $m \rightarrow \infty$, we deduce that $\varphi(u)=\int_{\Gamma_{\mathscr{W}}} u d \mu>0$, and thus, $\varphi(u) \neq 0$, from which the claim follows easily. Indeed, otherwise, if $\operatorname{supp} \mu \neq \Gamma_{\mathscr{W}}$, there exists $M \in \Gamma_{\mathscr{W}} \backslash \operatorname{supp} \mu$, and thus, by Urisohn's lemma (see, e.g., $\left.{ }^{\mathrm{XI}}\right)$, there exists $u \in C\left(\Gamma_{\mathscr{W}}\right)$ and an open neighborhood $\mathscr{V}(M)$ of M in $\Gamma_{\mathscr{W}}$ disjoint from supp μ and such that

$$
u(M)=1 \quad, \quad 0 \leq u \leq 1 \quad, \quad \text { and } u_{\mid \Gamma_{\mathscr{W}} \backslash \mathscr{V}(M)}=0
$$

Hence, by the above argument, $\varphi(u) \neq 0$, which contradicts the fact that $M \notin \operatorname{supp} \mu$

[^1]
Proof $\sim i v . \mu$ is a singular measure

First, note that

$$
\mu^{\mathscr{L}}\left(\Gamma_{\mathscr{W}}\right)=0,
$$

because $D_{\mathscr{W}}<2$, and, up to a multiplicative positive constant, $\mu^{\mathscr{L}}$ coincides with the 2-dimensional measure on \mathbb{R}^{2}. Now, since supp $\mu \subset \Gamma_{\mathscr{W}}$, and $\mu^{\mathscr{L}}\left(\Gamma_{\mathscr{W}}\right)=0$, it follows that μ is supported on a set of Lebesgue measure zero, which precisely implies that μ (viewed as a Borel measure on the rectangle $[0,1] \times\left[m_{\mathscr{W}}, M_{\mathscr{W}}\right]$ in the obvious way), is singular with respect to the restriction of $\mu^{\mathscr{L}}$ to this rectangle.

Proof - iv. μ is the weak limit of the discrete measures μ_{m}

Indeed, this follows at once from the fact that, for every $u \in \mathscr{C}\left(\Gamma_{\mathscr{W}}\right)$,

$$
\int_{\Gamma_{\mathscr{W}}} u d \mu=\lim _{m \rightarrow \infty} \int_{\Gamma_{\mathscr{W}}} u d \mu_{m}
$$

as desired.

This completes the proof.

The Quasi Self-Similar Sequence of Discrete Polyhedral Measures

The sequence of discrete polyhedral measures $\left(\mu_{m}\right)_{m \in \mathbb{N}}$ introduced just above, satisfies the following recurrence relation, for all $m \in \mathbb{N}^{\star}$,
The sequence of discrete polyhedral measures $\left(\mu_{m}\right)_{m \in \mathbb{N}}$ introduced in Theorem 53 just above, satisfies the following recurrence relation, for all $m \in \mathbb{N}^{\star}$,

$$
\mu_{m}=N_{b}^{D_{\mathscr{W}}-2} \sum_{T_{j} \in \mathscr{T}_{\mathscr{W}}} \mu_{m+1} \circ T_{j}^{-1},
$$

where for $\mathscr{T}_{\mathscr{W}}=\left\{T_{0}, \cdots, T_{N_{b}-1}\right\}$ is the nonlinear iterated function system (IFS) involved.

Note that relation ($\boldsymbol{\oplus}$) can be viewed as a generalization of classical self-similar measures, as exposed in ${ }^{\text {XII }}$, page 714 .

[^2]
Proof

First, we can note that, for $m \in \mathbb{N}^{\star}$,

$$
\varepsilon_{m+1}^{m+1}=\frac{1}{N_{b}} \varepsilon_{m}^{m}
$$

which ensures that

$$
\varepsilon_{m+1}^{(m+1)\left(D_{\mathscr{W}}-2\right)}=\frac{1}{N_{b}^{D_{W}-2}} \varepsilon_{m}^{m\left(D_{\mathscr{W}}-2\right)}=N_{b}^{2-D_{\mathscr{W}}} \varepsilon_{m}^{m\left(D_{\mathscr{W}}-2\right)} .
$$

We then simply use the result according to which, for $0 \leq j \leq N_{b}-1$, the $j^{\text {th }}$ vertex of the polygon $\mathscr{P}_{m+1, k}, 0 \leq k \leq N_{b}^{m}-1$, is the image of the the $j^{\text {th }}$ vertex of the polygon $\mathscr{P}_{m, k-i\left(N_{b}-1\right) N_{b}^{m}}$ by the map T_{i}, where $0 \leq j \leq N_{b}-1$ is arbitrary. Therefore, there is an exact correspondance between polygons at consecutive steps $m, m+1$: indeed, polygons at the $(m+1)^{t h}$ step of the prefractal approximation process are obtained by applying each map T_{i}, for $0 \leq i \leq N_{b}-1$, to the polygons at the $m^{\text {th }}$ step of the prefractal approximation process. We can then deduce that

$$
\sum_{x \in \mathscr{P}_{m} \cup \mathscr{Q}_{m}} \mu^{\mathscr{L}}\left(X, \mathscr{P}_{m}, \mathscr{Q}_{m+}\right) \delta_{X}=\sum_{T_{j} \in \mathscr{S}_{\mathscr{W}}} \sum_{X \in \mathscr{P}_{m+1} \cup \mathscr{Q}_{m+1}} \mu^{\mathscr{L}}\left(X, T_{j}^{-1}\left(\mathscr{P}_{m+1}\right), T_{j}^{-1}\left(\mathscr{Q}_{m+1}\right)\right) \delta_{X},
$$

IV. Atomic Decompositions

Trace Theorems, and Consequences

Two-Dimensional Polygonal $\pi_{\mathscr{W}, m}$-Net, $m \in \mathbb{N}$

Given a strictly positive integer m, we call two-dimensional polygonal $\pi_{\mathscr{W}, m}$-net a tessellation of \mathbb{R}^{2} into half-open N_{b}-gons of side lengths at most equal to $\sqrt{2} h_{m}$ which contains the set of polygons

$$
\left\{\bigcup_{j=0}^{N_{b}^{m}-1} \mathscr{P}_{m, j}\right\} \bigcup\left\{\bigcup_{k=1}^{N_{b}^{m}-2} \mathscr{Q}_{m, k}\right\}
$$

Property

Given $m \in \mathbb{N}^{\star}$:
i. For any integer $j \in\left\{0, \cdots, N_{b}^{m}-1\right\}$, and any pair of vertices $(X, Y) \in\left(V_{m} \cap \mathscr{P}_{m, j}\right)^{2}$:

$$
d_{e u c l}(X, Y) \leqslant N_{b} h_{m} \leqslant N_{b}^{-m\left(2-D_{W}\right)} .
$$

ii. For any integer $j \in\left\{1, \cdots, N_{b}^{m}-2\right\}$, and any pair of vertices $(X, Y) \in\left(V_{m} \cap \mathscr{Q}_{m, j}\right)^{2}$:

$$
d_{e u c l}(X, Y) \leqslant N_{b} h_{m} \leqslant N_{b}^{-m\left(2-D_{\mathscr{W}}\right)} .
$$

Atoms (Generalization of ${ }^{\mathrm{XIII}}$)

Given $s<1, p>1, m \in \mathbb{N}$ and $j \in\left\{0, \cdots, N_{b}^{m}-1\right\}$, a function $f_{m, j}$ defined on $\Gamma_{\mathscr{W}_{m}}$ is called a $\left(\mathscr{P}_{m, j}, s, p\right)$-atom if the following three conditions are satisfied:
i. $\operatorname{Supp} f_{m, j} \subset \mathscr{P}_{m, j}$;
ii. $\forall X \in V_{m} \cap \mathscr{P}_{m, j}: \quad\left|f_{m, j}(X)\right| \leqslant \mu_{\mathscr{L}}\left(\mathscr{P}_{m, j}\right)^{\frac{s}{D_{\mathscr{W}}}-\frac{1}{p}}$;
iii. $\forall(X, Y) \in\left(V_{m} \cap \mathscr{P}_{m, j}\right)^{2}$:

$$
\left|f_{m, j}(X)-f_{m, j}(Y)\right| \leqslant d_{e u c l}(X, Y) \mu_{\mathscr{L}}\left(\mathscr{P}_{m, j}\right)^{\frac{s-1}{D_{\mathscr{W}}-\frac{1}{p}}} .
$$

[^3]Similarly, Given $s<1, p>1, m \in \mathbb{N}$ and $j \in\left\{0, \cdots, N_{b}^{m}-1\right\}$, a function $f_{m, j}$ defined on $\Gamma_{\mathscr{W}_{m}}$ is called a ($\left.\mathscr{Q}_{m, j}, s, p\right)$-atom if the following three conditions are satisfied:
i. Supp $f_{m, j} \subset \mathscr{Q}_{m, j}$;
ii. $\forall X \in V_{m} \cap \mathscr{P}_{m, j}: \quad\left|f_{m, j}(X)\right| \leqslant \mu_{\mathscr{L}}\left(\mathscr{Q}_{m, j}\right)^{\frac{s}{D_{\mathscr{W}}}-\frac{1}{\rho}}$;
iii. $\forall(X, Y) \in\left(V_{m} \cap \mathscr{Q}_{m, j}\right)^{2}$:

$$
\left|f_{m, j}(X)-f_{m, j}(Y)\right| \leqslant d_{e u c l}(X, Y) \mu_{\mathscr{L}}\left(\mathscr{Q}_{m, j}\right)^{\frac{s-1}{D^{\mathscr{L}}}-\frac{1}{p}} .
$$

Atoms Associated with the Weierstrass Function

The restriction of the Weierstrass function to each polygon $\mathscr{P}_{m, j}$, (resp., $\mathscr{Q}_{m, j}$) is a ($\mathscr{P}_{m, j}, s, p$)-atom (resp., a ($\left.\mathscr{Q}_{m, j}, s, p\right)$-atom).

Atomic Decomposition of a Function Defined on the Weierstrass Curve

Given a continuous function f on the Weierstrass Curve, we will say that f admits an atomic decomposition in the following form:

$$
f=\lim _{m \rightarrow \infty} \sum_{X \in \mathscr{P}_{m} \cup \mathscr{Q}_{m}} \tilde{\lambda}_{f, m, X} \tilde{f}_{m, X}=\lim _{m \rightarrow \infty} \sum_{x \in \mathscr{P}_{m} \cup \mathscr{Q}_{m}} \tilde{\lambda}_{f, m} \tilde{f}_{m},
$$

where, for any $m \in \mathbb{N}$, we say that $\tilde{\lambda}_{f, m}$ is the $m^{\text {th }}$-atomic coefficient.
The functions $\tilde{f}_{m, X}$ and \tilde{f}_{m} will be called (m, s, p^{\prime})-atoms.

Atomic Decomposition of Spline Functions

Given $(n, k) \in \mathbb{N}^{2}$, a spline function of degree k on $\pi_{\mathscr{W}, n}$ admits an atomic decomposition of the form

$$
\text { spline }=\lim _{m \rightarrow \infty} \sum_{X \in \mathscr{P}_{m} \cup \mathscr{Q}_{m}} \tilde{\lambda}_{s, m, X}{\widetilde{s p l i n e}_{m, X} .} .
$$

(This directly comes from the definition of functions of $\mathscr{P}_{\circ} I_{k}\left(\pi_{N_{b}^{n}}\right)$ as piecewise polynomial functions.)

Property

Given the polyhedral measure μ on the Weierstrass Curve $\Gamma_{\mathscr{W}}$, and a continuous function f on $\Gamma_{\mathscr{W}}$, of atomic decomposition

$$
f=\lim _{m \rightarrow \infty} \sum_{X \in \mathscr{P}_{m} \cup \mathscr{Q}_{m}} \tilde{\lambda}_{f, m, X} \tilde{f}_{m, X},
$$

we have that

$$
\int_{\mathscr{D}\left(\Gamma_{W}\right)} f d \mu=\lim _{m \rightarrow \infty} \varepsilon^{m\left(D_{W}-2\right)} \sum_{x \in \mathscr{P}_{m} \cup \mathscr{Q}_{m}} \tilde{\lambda}_{f, m, X} \tilde{f}_{m, X} \mu\left(X, \mathscr{P}_{m}, \mathscr{Q}_{m}\right) .
$$

Such a decomposition makes sense since the set of vertices $\left(V_{m}\right)_{m \in \mathbb{N}}$ is dense in $\Gamma_{\mathscr{W}}$. Thus, because we deal with continuous functions, given any point X of the Weierstrass Curve, there exists a sequence $\left(X_{m}\right)_{m \in \mathbb{N}}$ such that

$$
f(X)=\lim _{m \rightarrow \infty} f\left(X_{m}\right)
$$

where, for any $m \in \mathbb{N}, X_{m}$ belongs to the prefractal graph $\Gamma_{\mathscr{W}_{m}}$.
We can naturally write $f\left(X_{m}\right)$ as

$$
f\left(X_{m}\right)=\sum_{Y_{m} \in V_{m}} f\left(Y_{m}\right) \delta_{X_{m} Y_{m}}\left(X_{m}\right),
$$

where δ is the classical Kronecker symbol; i.e.,

$$
\forall Y_{m} \in V_{m}: \quad \delta_{X_{m} Y_{m}}\left(Y_{m}\right)=\left\{\begin{array}{cc}
1, & \text { if } \\
0, & \text { else. }
\end{array} \quad Y_{m}=X_{m},\right.
$$

This, of course, yields

$$
f(X)=\lim _{m \rightarrow \infty} \sum_{Y_{m} \in V_{m}} f\left(Y_{m}\right) \delta_{X_{m} Y_{m}}\left(Y_{m}\right)
$$

Now, we can go a little further and, as in ${ }^{\text {XIV }}$, introduce spline functions $\psi_{X_{m}}^{m}$ such that

$$
\forall Y \in \Gamma_{\mathscr{W}}: \quad \psi_{X_{m}}^{m}(Y)=\left\{\begin{array}{cc}
\delta_{X_{m} Y_{m}}, & \forall Y \in V_{m} \\
0, & \forall Y \notin V_{m},
\end{array}\right.
$$

and write

$$
f(X)=\lim _{m \rightarrow \infty} \sum_{Y_{m} \in V_{m}} f\left(Y_{m}\right) \psi_{X_{m}}^{m}\left(Y_{m}\right),
$$

which is nothing but the application of the Weierstrass approximation theorem. In particular, spline functions are a natural choice for atoms.

[^4]
L^{p}-Norm of a Function on the Weierstrass Curve Defined by Means of an Atomic Decomposition

In the sequel, all functions f considered on the Weierstrass Curve are implicitely supposed to be Lebesgue measurable.

Given $p \in \mathbb{N}^{\star}$, and a continuous function f on $\Gamma_{\mathscr{W}}$, whose absolute value $|f|$ is defined by means of an atomic decomposition as

$$
|f|=\lim _{m \rightarrow \infty} \sum_{x \in \mathscr{\mathscr { P }}_{m} \cup \mathscr{Q}_{m}} \tilde{\lambda}_{|f|, m, x} \widetilde{|f|}_{m, x},
$$

its L^{p}-norm for the measure μ is given by

$$
\begin{aligned}
\|f\|_{L^{p}\left(\Gamma_{\mathscr{W}}\right)} & =\left(\int_{\mathscr{D}\left(\Gamma_{\mathscr{W}}\right)}|f|^{p} d \mu\right)^{\frac{1}{p}} \\
& =\left(\left.\lim _{m \rightarrow \infty} \varepsilon^{m\left(D_{\mathscr{W}}-3\right)} \sum_{x \in \mathscr{P}_{m} \cup \mathscr{Q}_{m}} \mu^{\mathscr{L}}\left(X, \mathscr{P}_{m}, \mathscr{Q}_{m}\right) \tilde{\lambda}_{|f|, m, j, x}^{p} \widetilde{f}\right|_{m, j, x} ^{p}\right)^{\frac{1}{p}} .
\end{aligned}
$$

Besov Space on the Weierstrass Curve

(Extension of the result given by Th. 6, p. 135, in ${ }^{\mathrm{XV}}$)

Given $k \in \mathbb{N}, k<\alpha \leq k+1, p \geq 1$ and $q \geq 1$, the Besov space $B_{\alpha}^{p, q}\left(\Gamma_{\mathscr{W}}\right)$ is defined as the set of functions $f \in L^{p}(\mu)$ such that there exists a sequence $\left(c_{m}\right)_{m \in \mathbb{N}} \in \ell^{q}$ of nonnegative real numbers such that for every $\pi_{N_{b}^{(D, W-3) m}-\text { net, one can find a spline }}$ function spline $\left(\pi_{N_{b}^{(D, W-3) m}}\right) \in \mathscr{P}_{o l_{[\alpha]}}\left(\pi_{N_{b}^{(D, y-3) m}}\right)$ satisfying, for all $m \in \mathbb{N}$,

$$
\left\|f-\operatorname{spline}\left(\pi_{N_{b}^{(D W-3) m}-}\right)\right\|_{L^{p}(\mu)} \leq N_{b}^{\left(D_{\mathscr{W}}-3\right) m \alpha} c_{m}, \cdot\left(\mathscr{C} \text { ond }_{\text {Besov spline }}\right)
$$

[^5]
Remark

The atomic decomposition used $\mathrm{in}^{\mathrm{xVI}}$ is obtained by introducing small neighborhoods of the curve under study (union of balls). Our polygonal domain appears to be a more natural choice. Indeed, unlike the aforementioned balls, the polygons involved do not overlap with each other, which works better for the required nets.

[^6]
Besov Norm

Given $k \in \mathbb{N}, k<\alpha \leq k+1, p \geq 1$ and $q \geq 1$, we can define, as in ${ }^{\mathrm{XVII}}$, the $B_{\alpha}^{p, q}\left(\Gamma_{\mathscr{W}}\right)$ norm of a function f defined on the Weierstrass Curve as

$$
\|f\|_{B_{\alpha}^{p, q}\left(\Gamma_{\mathscr{W}}\right)}=\|f\|_{L^{p}\left(\Gamma_{W}\right)}+\inf \left\{\sum_{n \in \mathbb{N}} c_{n}^{q}\right\}^{\frac{1}{q}},
$$

Yet, in order to obtain a characterization of the Besov space $B_{\alpha}^{p, q}\left(\Gamma_{\mathscr{W}}\right)$ by means of its norm, it is more useful to deal with the equivalent norm given by

$$
\|f\|_{B_{\alpha}^{p, q}\left(\Gamma_{W}\right)}=\|f\|_{L^{p}\left(\Gamma_{W}\right)}+\left\{\iint_{(T, Y) \in \Gamma_{W}^{2}} \frac{|f(T)-f(Y)|^{q}}{d_{\text {eucl }}^{D_{W}+\alpha q}(T, Y)} d \mu^{2}\right\}^{\frac{1}{q}} .
$$

This enables one to make the link with discrete and fractal Laplacians, by means of the fractional difference quotients involved.

[^7]
Remark ~ i.

Characterizing Besov spaces on $\Gamma_{\mathscr{W}}$ by means of the previous norm is directly associated to the definition of a sequence of (suitably renormalized) discrete graph Laplacians $\left(\Delta_{m}\right)_{m \in \mathbb{N}}$ on the sequence of prefractal approximations $\left(\Gamma_{\mathscr{W}_{m}}\right)_{m \in \mathbb{N}}$ In a sense, it is also connected to the existence of the limit

$$
\lim _{m \rightarrow \infty} \Delta_{m}
$$

by means of an equivalent pointwise formula expressed in terms of integrals, somehow the counterpart, in a way, of the one which is well known in the case of the fractal Laplacian on the Sierpiński Gasket ${ }^{\mathrm{XVIII}}$, XIX .

```
XVIIII Jun Kigami. Analysis on Fractals. Cambridge University Press, }2001
    XIX Robert S. Strichartz. Differential Equations on Fractals, A tutorial. Princeton University
Press, 2006.
```


Remark ~ ii.

The difficulty, in our context, is to obtain an equivalent formulation of the definition of Besov spaces with the sequence of discrete Laplacians alluded to in part i. Clearly, a discrete Laplacian corresponds to the usual first difference. Working with discrete Laplacians, along with atomic decompositions of functions, leads to expressions of the following form:
$\lim _{m \rightarrow \infty} \varepsilon^{2 m\left(D_{\mathscr{W}}-2\right)} \sum_{(T, Y) \in\left(\mathscr{P}_{m} \cup \mathscr{Q}_{m}\right)^{2}, Y_{\tilde{m}^{T}}} \mu^{\mathscr{L}}\left(T, \mathscr{P}_{m}, \mathscr{Q}_{m}\right) \mu^{\mathscr{L}}\left(Y, \mathscr{P}_{m}, \mathscr{Q}_{m}\right) \tilde{\lambda}_{f, m} \frac{\left|\tilde{f}_{m}(T)-\tilde{f}_{m} f(Y)\right|^{q}}{d_{\text {eucl }}^{D_{\mathscr{W}}+(\alpha-k) q}(T, Y)} \cdot$

Theorem: Characterization of Besov Spaces

Given $k \in \mathbb{N}, k<\alpha \leq k+1, p \geq 1$ and $q \geq 1$, and a continuous function f given by means of an atomic decomposition of the form

$$
f=\lim _{m \rightarrow \infty} \sum_{X \in \mathscr{P}_{m} \cup \mathscr{Q}_{m}} \tilde{\lambda}_{f, m, X} \tilde{f}_{m, X}
$$

belongs to the Besov space $B_{\alpha}^{p, q}\left(\Gamma_{\mathscr{W}}\right)$ if and only if the following two conditions are satisfied,

$$
\left(3-D_{\mathscr{W}}\right)\left\{q\left(\frac{1}{p}-\frac{s-1}{D_{\mathscr{W}}}\right)\right\}+\left(2-D_{\mathscr{W}}\right)\left(D_{\mathscr{W}}+(\alpha-1) q\right)<2, \quad\left(\mathscr{C o n d}_{\text {Besov }}\right)
$$

and

$$
\frac{D_{\mathscr{W}}}{3-D_{\mathscr{W}}}+\frac{D_{\mathscr{W}}}{p} \leq s, \quad\left(\mathscr{C} \text { ond }_{L^{p}}\right)
$$

${ }^{\mathrm{xx}}$ Claire David and Michel L. Lapidus. Iterated fractal drums ~ Some New Perspectives: Polyhedral Measures, Atomic Decompositions and Morse Theory. 2022.

Trace of an $L_{\text {loc }}^{1}\left(\mathbb{R}^{2}\right)$ Function on the Weierstrass Curve

Along the lines of ${ }^{\mathrm{XXI}}$, page 15 , or ${ }^{\mathrm{XXII}}$, we will say that an $L_{\text {loc }}^{1}\left(\mathbb{R}^{2}\right)$ function f is strictly defined at a vertex X of the Weierstrass Curve if the following limit exists and is given by

$$
\bar{f}(X)=\lim _{m \rightarrow \infty} \frac{1}{\mu^{\mathscr{L}}\left(X, \mathscr{P}_{m}, \mathscr{Q}_{m}\right)} \sum_{Y \sim X} f(Y)<\infty .
$$

This enables us to define the trace $f_{\Gamma_{, \mu}}$ of the function f on the Weierstrass Curve, via

$$
\forall X \in \Gamma_{W}: f_{\Gamma_{W}}(X)=\bar{f}(X) .
$$

The trace \bar{f} of an $L_{l o c}^{1}\left(\mathbb{R}^{2}\right)$ function thus naturally admits an atomic decomposition.

[^8]
Associated Sobolev Space

We set

$$
m_{\mathscr{W}}=\min _{t \in[0,1]} \mathscr{W}(t) \quad, \quad M_{\mathscr{W}}=\max _{t \in[0,1]} \mathscr{W}(t) \quad, \quad \Omega_{\mathscr{W}}=[0,1] \times\left[m_{\mathscr{W}}, M_{\mathscr{W}}\right] .
$$

Then,

$$
\Gamma_{\mathscr{W}} \subset \Omega_{\mathscr{W}} \subset \mathbb{R}^{2},
$$

and, given $k \in \mathbb{N}$, and $p \geq 1$,

$$
W_{k}^{p}\left(\Omega_{\mathscr{W}}\right)=\left\{f \in L^{p}\left(\Omega_{\mathscr{W}}\right), \forall \alpha \leq k, D^{\alpha} f \in L^{p}\left(\Omega_{\mathscr{W}}\right)\right\},
$$

where $L^{p}\left(\Omega_{\mathscr{W}}\right)$ denotes the Lebesgue space of order p on $\Omega_{\mathscr{W}}$, while, for the multiindex $\alpha \leq k, D^{\alpha} f$ is the classical partial derivative of order α, interpreted in the weak sense.

Theorem: The Trace of Sobolev Spaces as Besov Spaces (counterpart of the corresponding one obtained in ${ }^{\text {XXIII }}$, Chapter VI)

Given a positive integer k, and a real number $p \geq 1$, we set

$$
\beta_{k, p}=k-\frac{2-D_{\mathscr{W}}}{p} .
$$

We then have that

$$
W_{k}^{p}\left(\Omega_{\mathscr{W}}\right)_{\mid \Gamma_{\mathscr{W}}}=B_{\beta}^{p, p}\left(\Gamma_{\mathscr{W}}\right) .
$$

[^9]
Corollary: Order of the Fractal Laplacian

In the case where $k=p=2$, provided that

$$
s>1+D_{\mathscr{W}} \frac{1-D_{\mathscr{W}}+\left(2-D_{\mathscr{W}}\right)\left(2 D_{\mathscr{W}}-3\right)}{2\left(3-D_{\mathscr{W}}\right)},
$$

we then have that

$$
W_{2}^{2}\left(\Omega_{\mathscr{W}}\right)_{\mid \Gamma_{\mathscr{W}}}=B_{\beta_{2,2}}^{2,2}\left(\Gamma_{\mathscr{W}}\right),
$$

where

$$
\beta_{2,2}=2-\frac{2-D_{\mathscr{W}}}{2}=2-\frac{1}{2} \frac{\ln \lambda}{\ln N_{b}}>2 .
$$

Consequently, by analogy with the classical theories, the Laplacian on the Weierstrass Curve arises as a differential operator of order $\left.\beta_{2,2} \in\right] 2,3[$.

Connection with the Optimal Exponent of Hölder Continuity

We note that

$$
\beta_{2,2}=2+\frac{\alpha_{\mathscr{W}}}{2},
$$

where the Codimension $\left.\quad \alpha_{\mathscr{W}}=2-D_{\mathscr{W}}=-\frac{\ln \lambda}{\ln N_{b}} \in\right] 0,1[$ is the best (i.e., optimal) Hölder exponent for the Weierstrass function, as was initially obtained by G. H. Hardy in ${ }^{\text {XIV }}$), and then, by a completely different method - geometrically i^{xxv}.
$\overline{\text { XXIV Godfrey Harold Hardy. "Weierstrass's Non-Differentiable Function". In: Transactions of the }}$ American Mathematical Society 17.3 (1916), pp. 301-325.
$\mathrm{Xxv}^{\mathrm{X}}$ Claire David and Michel L. Lapidus. Weierstrass fractal drums - I-A glimpse of complex dimensions. 2022.

The Polyhedral Measure In Real Life

The Polyhedral Measure In Real Life

\leadsto Nature produces many fractal-like structures. Until now, the tools of fractal geometry have been little used to model the morphogenesis of these living forms.
\leadsto The acellular model organism Physarum polycephalum grows in a network and fractal branched way.

(a) P. polycephalum plasmodium. (b) Vein network. (C) A. Dussutour \& C. Oettmeier.
\leadsto The change of shape in Physarum polycephalum corresponds to a change of fractal (complex) dimensions (undergoing work with A. Dussutour, H. Henni, C. Godin).
\leadsto Just as in our mathematical theory.
\leadsto What is the growth law?
\leadsto Can we find the underlying variational principle?

Forthcoming: The Magnitude

\leadsto Counterpart of the (topological) Euler characteristic ${ }^{\mathrm{XXVI}}$.
\leadsto New method for numerically determining the Complex Dimensions of a fractal ${ }^{\mathrm{XXVII}}$.
\leadsto Also connected to the polyhedral measure.

```
XXVI
pp. 857-905. ISSN: 1431-0635.
XXVIIClaire David and Michel L. Lapidus. Fractal Complex Dimensions ~ A Bridge to Magnitude.
2023.
```


[^0]: III James L. Kaplan, John Mallet-Paret, and James A. Yorke. "The Lyapunov dimension of a nowhere differentiable attracting torus". In: Ergodic Theory and Dynamical Systems 4 (1984), pp. 261-281.
 ${ }^{\text {IV }}$ Feliks Przytycki and Mariusz Urbański. "On the Hausdorff dimension of some fractal sets". In: Studia Mathematica 93.2 (1989), pp. 155-186.

 V Tian-You Hu and Ka-Sing Lau. "Fractal Dimensions and Singularities of the Weierstrass Type Functions". In: Transactions of the American Mathematical Society 335.2 (1993),
 pp. 649-665.
 ${ }^{\text {VI }}$ Claire David. "Bypassing dynamical systems: A simple way to get the box-counting dimension of the graph of the Weierstrass function". In: Proceedings of the International Geometry Center 11.2 (2018), pp. 1-16. URL:
 https://journals.onaft.edu.ua/index.php/geometry/article/view/1028.

[^1]: ${ }^{\mathrm{XI}}$ Walter Rudin. Real and Complex Analysis. Third. McGraw-Hill Book Co., New York, 1987, pp. xiv+416. ISBN: 0-07-054234-1.

[^2]: XII John E. Hutchinson. "Fractals and self similarity" . In: Indiana University Mathematics Journal 30 (1981), pp. 713-747.

[^3]: ${ }^{\text {XIII }}$ M. Kabanava. "Besov Spaces on Nested Fractals by Piecewise Harmonic Functions". In: Zeitschrift für Analysis und ihre Anwendungen 31.2 (2012), pp. 183-201.

[^4]: XIV Robert S. Strichartz. Differential Equations on Fractals, A tutorial. Princeton University Press, 2006.

[^5]: ${ }^{\mathrm{XV}}$ Alf Jonsson and Hans Wallin. Function spaces on subsets of \mathbb{R}^{n}. Mathematical reports (Chur, Switzerland). Harwood Academic Publishers, 1984.

[^6]: ${ }^{\mathrm{XVI}}$ M. Kabanava. "Besov Spaces on Nested Fractals by Piecewise Harmonic Functions". In: Zeitschrift für Analysis und ihre Anwendungen 31.2 (2012), pp. 183-201.

[^7]: XVII Hans Wallin. "The trace to the boundary of Sobolev spaces on a snowflake". In: manuscripta math. 73 (1991), pp. 117-125.

[^8]: ${ }^{\mathrm{XXI}}$ Alf Jonsson and Hans Wallin. Function Spaces on Subsets of R^{n}. Mathematical Reports, Vol. II, Part 1. Harwood Academic Publishers, London, 1984.
 XXII Hans Wallin. "The trace to the boundary of Sobolev spaces on a snowflake". In: manuscripta math. 73 (1991), pp. 117-125.

[^9]: XXIII Alf Jonsson and Hans Wallin. Function spaces on subsets of \mathbb{R}^{n}. Mathematical reports (Chur, Switzerland). Harwood Academic Publishers, 1984.

