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A pathological object
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Introduction

+00
x €Rp #(x)=) ANcos(mb"x) , 0<A<1l , Ab>1
n=0

Continuous everywhere, while being nowhere differentiable’,".
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Our question:

Can we find

A suitable measure?
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Geometric Framework

l. The Geometric Framework
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Geometric Framework

We hereafter place ourselves in the Euclidean plane of dimension 2, referred
to a direct orthonormal frame. The usual Cartesian coordinates are (x,y). The
horizontal and vertical axes will be respectively refered to as (x'x) and (y'y).
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Geometric Framework

Notation

In the following, A and N, are two real numbers such that:

0<A<1l , N, €N and AN,>1-

We consider the Weierstrass function %', defined, for any real number x, by

+00
W(x) = Z A" cos (27 Nj x) -
n=0
Associated graph: the \Weierstrass Curve.

Due to the one-periodicity of the % function, we restrict our study to the inter-
val [0, 1.

Cl. David (Sorbonne Université - LJLL) Polyhedral Measures, Atomic decompositions



Geometric Framework

Minkowski (or box-counting) Dimension

InX
Dy, =2+ N equal to its Hausdorff dimension V”,V”',IX,X
b
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The Weierstrass Curve as a Cyclic Curve

In the sequel, we identify the points

(0,#(0)) and (1,7(1))=(1,#(0)) -

y

Remark

The above convention makes sense, in so far as the points (0, 7/(0))
and (1,7#(1)) have the same vertical coordinate, in addition to the periodic

properties of the % function.
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Geometric Framework

N =t

Property (Symmetry with respect to the vertical line x =

Since, for any x € [0,1]:

+00
#(1=x) =) A" cos(27 Ny — 27 Ny x) = #(x)
n=0

the Weierstrass Curve is symmetric with respect to the vertical straight

line x = =. w

2

WA,VA h‘v%% \
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Geometric Framework

Proposition (Nonlinear and Noncontractive Iterated Function
System (IFS))

We approximate the restriction [y to [0, 1[ XR, of the Weierstrass Curve, by a
sequence of finite graphs, built through an iterative process, by using the
nonlinear iterated function system (IFS) of the family of C*° maps from R?

2
to R™ denoted by

‘7“/1/ = {T07 Y TNb—l} )

where, for 0 < i < N, — 1 and any point (x, y) of R?,

T:(x,y) = (—XAZI,)\y+cos(27r (XAZI))) .

Property (Attractor of the IFS)

Np-1
The Weierstrass Curve is the attractor of the IFS Ty : [, = | T;(I',).
i=0
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Fixed Points

For any integer i belonging to {0, -+, N, — 1}, we denote by:

i 1 2mi
Piz(Xiayi)=<Nb_171_)\ Cos(Nb_l))

the fixed point of the map T;.
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Geometric Framework

Sets of vertices, Prefractals
Nb—l
We set: Vg = {Pq,++, Pn,-1}, and, forany m € N*: v, = || T, (V,, ).

i=0
For m € N, the set of points V,,, where two consecutive points are linked, is an ori-

ented graph (according to increasing abscissa): the m™-order W -prefractal [, .

P ~ P,

/ ' To (Pa=Th (Po) T (P=T; (Po) /
. AN A

P Ll
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Geometric Framework

The Weierstrass IFD

We call Weierstrass Iterated Fractal Drums (IFD) the sequence of prefractal
graphs which converge to the Weierstrass Curve.

AN VY
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Geometric Framework

Adjacent Vertices, Edge Relation

For any natural integer m, the prefractal graph I, is equipped with an edge
relation ~: two vertices X and Y of [y, , i.e. two points belonging to V/,, will
m
be said to be adjacent (i.e., neighboring or junction points) if and only if the line
segment [ X, Y] is an edge of 'y, ; we then write X ~ Y. This edge relation
m

depends on m, which means that points adjacent in V,, might not remain adjacent
in Vm+1-

Pointsin Vj,,1\ Vj, YeVinnVma
X eV Vi Y- X
X~Y i m
m

Z e Vina\Vin
Z~ T

m+1
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Property

For any natural integer m, we have that
I Vi C Vgt
i #Vy=(Ny—1) Ny +1-

Points in Vj,,4\ Vi, YeVnnVna
X eVmn Vi Y~ X
m

X~Y B .
m

) N T € Vinu1\Vinu1
T~ Z

m+1

Ze Vp\Vina
Z~ T

m+1
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/ii. The prefractal graph Iy, has exactly (N, — 1) Np' edges.

iv. The consecutive vertices of the prefractal graph I, are the vertices of Ny
simple polygons &, , with N, sides. For m € N, the junction point
between two consecutive polygons is the point

(Np—1) k ” (Ny—1) k
((Nb_]-)N[T, ( (N, = 1) Ny
The total number of junction points is thus N, — 1.
For instance, in the case N = 3, one gets triangles.
In the sequel, we will denote by &y the initial polygon, i.e. the one whose
vertices are the fixed points of the maps T;, 0 </ < N, — 1.

v v

)) ., lsksNy-1-

The polygons, in the case where A\ = and Np = 3.

i ’
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Geometric Framework

1
=, and Ny =17.

The polygons, in the case where A\ = 3

-1t -1
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Geometric Framework

1
The prefractal graphs Ty, Ty, Ty,, Ty, in the case where A = 3 and N = 3.

v v

<
<

A AN ,




Geometric Framework

1
The prefractal graphs Ty, Ty, Ty,, Ty, in the case where A = X and Ny = 4.

v v

x

Polyhedral Measur



Framework

1
=,and Np =7.

The prefractal graphs Ty, Tyq, Ty, Ty, in the case where X = 3

v v
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Geometric Framework

Vertices of the Prefractals, Elementary Lengths,
and Heights

Given m € N, we denote by (Mj,m)jc(n,-1)np—1 the set of vertices of the
prefractal graph 'y, . One thus has, for any integer j in {0, -+, (N, — 1) N’ — 1}:

J J
M; = 4 .
o ((Nb—l)NzT’ ((Nb—l)Ng'))
We also introduce, for 0 < j < (N, — 1) Ny’ — 2:
i. the elementary horizontal lengths:

1

[ S—
(Np = 1) Ny
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Geometric Framework

il. the elementary lengths:

_ _ {2 2
Lije1,m = d(Mj,m’ Mj+1,m) =\ LI+ h i,

iil. the elementary heights:

_ Y SR U B
"““’m"W((Nb—l)N:) W((Nb—lwg")

M;m
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Geometric Framework

iv. the geometric angles:

ej—l,j,m = ((}/')/)7 (IVIj—LmMj,m)) 5 0j,j+1,m = ((}/'}/)7 (A/Ij,mMj+1,m)) s

which yield the value of the geometric angle between consecutive edges
[ M1, My M M1, m]:

01-_171-’,,1 + 0j,j+17m = arctan —2~— + arctan m

|hj-1jml |j je1ml
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Geometric Framework

Property (Scaling Properties of the Weierstrass Function, and
Consequences)

Since, for any real number x

+00
W (x) = Z A" cos (27 Nj x)
n=0

one also has
L 1 e 1
n+ n n
W (Npx) = Z)\ cos(27rNb ) Y ’;)\ cos (27 Np x) = X {# (x) — cos (27 x)}

which yield, for any strictly positive integer m, and any j in {0, -+, #V,.}:

S R i _2mi
W((Nb—l)N[,") }‘W((N,,—1)N,;"-1)+°°s((N,,-1)N,;"-l)
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Geometric Framework

By induction, one obtains that

W(m)”mw((wb.—lﬂ "ZA cos % '
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Geometric Framework

A Consequence of the Symmetry with respect to the Vertical

Line x = <

2

For any strictly positive integer m and any j in {0, ---, #V,,,}, we have that

which means that the points

(Np—1) Ny - v (Np—1)Np' - and J % J
(Np=1)N (Np—1) N[ (Np—1) N[’ (Np=1) N[

1
are symmetric with respect to the vertical line x = 7
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Geometric Framework

y
A 1
X =
2
M;_1.m Mn,-1) N js1,m
1l
L > x
1
-1r Mj—1 +p,m M(Nb—1) Np™—j+1-p,m
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Geometric Framework

Property

i For0sj=<

N,-1
ii. For (bz—)

j+1
Np-1

Np-1
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Property

Given a strictly positive integer m:
i. For any jin {0, -+, #V,,}, the point

o N,;"’W((Nb 5 NL”))

is the image of the point

J . J SN (i -y NgTt =i (N = 1) N
((N,,—l)N[,"’l_"W((Nb—l)Ng”l '))_( (N — 1) N W( (N, — 1) NP ))

by the map 7;,0<i < N, —1.
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Geometric Framework

As a consequence, the jth vertex of the polygon &, ,, 0 < k < Ny -1,
0<j<N,—-1,ie. the point:

((Nb_l)k+j ((Nb_l)k+j))
m W "
(N, = 1) Ny (N, = 1) N,

is the image of the point

(Np—=1) (k=i (Np=1)Ng'™) +j ) (k=i(Np=1)NG™ )+
(N, - 1) Np* ’ (N, - 1) Np*

i.e. is the the jt" vertex of the polygon &, ,i(n,-1)npt-
There is thus an exact correspondence between vertices of the polygons
at consecutive steps m—1, m.

ii. Given j in {0, -, Np — 2}, and k in {0, ---, N} — 1} :

o (o (S ) msone ) (0 (555) - (=)
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Geometric Framework

Bounding Result: Upper and Lower Bounds
for the Elementary Heights

For any strictly positive integer m, and any j in {0, -, (N, — 1) Ny'}, we have
that

m . j+1 . J m

Cinr 2 s|’”((N -1)N”)"”((N —1>Nm)‘5C’”" e
m(Dy -2) b b b b m (D =2)

Ny Ny
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Geometric Framework

where

2-D .
Cor=(Ny,—1 7 min
inf ( b ) 0<j<N,—1

j+1 J
W(Nb—1>_7/(’vb—1)‘

’”(ﬁf—ll)"”(wf-l)\* (Nb—l)z(ilvb—l))'

and

2-D-
Con = (=17 (e,

These constants depend on the initial polygon 7.
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Geometric Framework

Theorem: Sharp Local Discrete Reverse Holder
Properties of the Weierstrass Function

For any natural integer m, and any pair of real numbers (x,x') such that:

(Np—1)k+j ) 1 (Np—1)k+j+¢ :
== =((Np-1)k+j) L =—* ———  =((Ny=1)k+j+¥¢) L
X (Nb_l)Nt’;n (( b ) ./) m (Nb—l)NlT (( b ) J ) m
where 0 < k< N, —1" -1, and
i. if the integer Np is odd,
051<N"_1 and 0<j+£sNb_1
2 2
Np—-1 Np-1
or b2 <j<Ny,-1 and "2 <j+lsNp—1;
ii. if the integer N is even,
Osj<% and 0<j+£s%
Ny

N
or 7b+15j<Nb—1 and +1<j+0=<Ny-1,

2
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Geometric Framework

__ Left-sidevertices  Right - side vertices.

Bottom vertex” v
Bottom vertex Right - side vertices

This means that the points (x, 7 (x)) and (x', 'W(x')) are vertices of the poly-
gon Pk both located on the left-side of the polygon, or on the right-side.

Then, one has the following reverse-Hélder inequality, with sharp Hélder expo-

InA
-—— =2-Dy,
nent In N, W
2—D«;1/

Cint <|wixy-wx)-

I
X —X|
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Corollary

One may now write, forany m € N*, and 0 <j < (N, = 1) Ny —1:

i. for the elementary heights:

2-D
hisijm= "Ly " 0(1)

iI. for the elementary quotients:

hji—1j,m

=Ly o)

where:
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Il. Polyhedral Measure
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Polyhedral Measure

m™ Cohomology Infinitesimal

Given any m € N, we will call m™ cohomology infinitesimal the number

em = ; L > 0
Note that this m™ cohomology infinitesimal is the one naturally associated to the
scaling relation of #'.
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Polygonal Sets

Forany m € N, the consecutive vertices of the prefractal graph 'y, are the vertices
of Ny’ simple polygons 2, , with N, sides.
We now introduce the polygonal sets

P ={Pmi, 0<sk=Ny =1} and 2, ={2ns,0=k<N, -2}

v

A

Initial polygon

P X P,

polygon Pj,o polygon Py

1 polygon P4

polygon Qi

polygon Q4

Py
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Notation

For any m € N, we denote by:
i X € Py (resp., X € 2p,,) a vertex of a polygon &, «,
with 0 < k < ' — 1 (resp., a vertex of a polygon 2., ,
with 1 < k < N = 2).

i PnlJ 2., the reunion of the polygonal sets &, and 2,,, which consists in
the set of all the vertices of the polygons &7, ,, with 0 < k < Np' -1, along
with the vertices of the polygons 2, ,, with 1 < k < Ny —2. In
particular, X € Z,,|J 2., simply denotes a vertex in &, or 2,,.

i Pm()2m the intersection of the polygonal sets &, and 2,,, which
consists in the set of all the vertices of both a polygon &, ,

with 0 < k < N, — 1, and a polygon D, with 1 <'ks< Np - 2.
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Power of a Vertex

Given m € N*, a vertex X of [y, is said:

i. of power one relative to the polygonal family &2, if X belongs to (oris a
vertex of ) one and only one N,-gon &, ;, for 0<j < Ny —1;

1
ii. of power 5 relative to the polygonal family &, if X is a common vertex

to two consecutive Ny-gons P, and Py, i1, for 0<j < Ny —2;

ill. of power zero reative to the polygonal family &2, if X does not belong to
(or is not a vertex of) any N,-gon &, ;, for0<j <N, — 1.
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Polyhedral Measure

Similarly, given m € N, a vertex X of '), is said:

i. of power one relative to the polygonal family 2, if X belongs to (or is a
vertex of ) one and only one N,-gon &, ;, for 0 < j < Ny - 2;

1
ii. of power 5 relative to the polygonal family &, if X is a common vertex

to two consecutive Ny-gons 2, ; and 2, iy, for 0 < j < Ny - 3;

ill. of power zero reative to the polygonal family &2, if X does not belong to
(or is not a vertex of) any N,-gon 2,,;, for 0 <j < N’ - 2.
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Polyhedral Measure

Sequence of Domains Delimited by the 7 IFD

We introduce the sequence of domains delimited by the Weierstrass IFD as the
sequence (7 (I, ), .. of open, connected polygonal sets (7, U 2,) ..,
where, for each m € N, &, and 2, respectively denote the polygonal sets in-
troduced just above.

y

“Ah

2 (Ty,) and Z (Ty,), for X = % and N, = 3.
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Polyhedral Measure

1
7 (Ty,), for X = 5 and N, = 3.
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Domain Delimited by the Weierstrass IFD

We call domain, delimited by the Weierstrass IFD, the set, which is equal to the
following limit,

7(Ty) = lim 7(Ty,)

where the convergence is interpreted in the sense of the Hausdorff metric on R,
In fact, we have that

D(Ty)=Ty-
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Polyhedral Measure

Notation (Lebesgue Measure (on R?))

In the sequel, we denote by 11 the Lebesgue measure on R?.

Notation

For any m € N, and any vertex X of V,,, we set:

1 .
A P, Pa) > o (Pmi), X & 2,
b OsjsNE"—l,X vertex of mej
1 .
o P(X 2m) > iz (2m)) X ¢ P,
b lsjle’,"—2,X vertex of Pp, j
P‘g (Xv'@m7gm) =
1
T, 1P 06 Zn) Yz (Pu)+p(X.2n) > ez (2my)
0<js Ny -1, 1<j< Ny -2,
X vertex of P, ; X vertex of 2, ;
fXe?,n2,-
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Property

We set

= min #(t My, = W (t)-
my = min (t) , My [max, (t)

Given a continuous function v on [0, 1] X [my,, My, ], we have that, forany m € N,
and any vertex X of V,,:

Z ) Z . -(3-Dy
|/Jf (Xa'%magm)u(x”sy‘ (Xw%m’iy’m)( |u|)5Nb( vm,

max
[0,1]x[my ,My ]

Consequently, we have that

em P | (X, Py i) u(X)| 5 " -

. m . .. . .
Since the sequence Z Em is a positive and increasing sequence
Xe€PmlU2m meN
(the number of vertices involved increases as m increases), this ensures the existence
of the finite limit

||m Ez(D%/_z) Z /Jj%l (Xa <ym7 c‘[Qm) u (X) ‘
m— oo
Xe€ZmU2m
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Polyhedral Measure

Proof

For any m € N, and any vertex X of V,,, we have that

17 (X, Py D) < em®”™ and 17 (X, Py 2p) s eptPr 7

m

The total number of polygons 2, is Nj', while the total number of polygons 2,,
is equal to Nj' — 1. We then have that

Y (X Py D) 5 en O
XeZ,U2n
which, as desired, ensures the existence of the finite limit

( max |u|) lim Eﬁ(DW_z) Z ,ug (X; Py Zm) -
[0.1Ix[my My ] ) msco xed o,
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Polyhedral Measure on the Weierstrass IFD

We introduce the polyhedral measure on the Weierstrass IFD, denoted by p, such
that for any continuous function u on the Weierstrass Curve,

[ wdn=tim en® Y i (X P ) u(X) s ()
Ty XE€ZPmU2m

which can also be understood in the following way,

J udp = J udp
My DTy )
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Polyhedral Measure

Theorem - |

The polyhedral measure p is well defined, positive, as well as a bounded,
nonzero, Borel measure on 2 (Iy ). The associated total mass is given by

w(2(Ty)) = lim ep@ 2% )X, P, D) (x%)

Xe2Z,U2n,

and satisfies the following estimate:
2 2
(2 (Ty)) < A (Np=1)" Cap + (x % %)
Furthermore, the support of p coincides with the entire curve:

suppp =2 (Ty) =Ty -
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Theorem - |l

In addition,  is the weak limit as m — oo of the following discrete measures (or
Dirac Combs), given, for each m € N, by

=m0 N )X P 2in) Ox
XeZ,U2n

where ¢ denotes the cohomology infinitesimal, and dx the Dirac measure concen-
trated at X.
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Polyhedral Measure

Proof ~ /. i1 is a well defined measure.

Indeed, the map ¢

ur p(u) = J udp
My
is a well defined linear functional on the space C (I'y ) of real-valued, continuous
functions on I'y. Hence, by a well-known argument, it is a continuous linear func-
tional on C ('), equipped with the sup norm. Since 'y is compact, and in light of
its definition, p is a bounded, Radon measure, with total mass ¢(1) = 1 (2 (I'y)),
also given by (%), and where 1 denotes the constant function equal to 1 on .
Then, according to the Riesz representation theorem, the associated positive Borel
measure (still denoted by ) is a bounded and positive Borel measure with the same

total mass (2 (M) = u(Fy).
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Polyhedral Measure

Proof ~ ii. The nonzero measure — Estimates for the
total mass of 1

For0 < j < N, — 1, each polygon P, j is contained in a rectangle of height at most
equal to (N — 1) h,,,, and of width at most equal to (N, — 1) L,,,. This ensures that
the Lebesgue measure of each polygon &, ; is at most equal to (N, — 1)2 hpm Ly
We also have the following estimate

2=Dyy
hm < Coup Ly ™"

where

2-D-
G = (=077 (e,

Wu:—ll)"”(mj—l)’* (Nb—1>2(7;Nb—1))'

Consequently:

1227% (gzm,j) = (Nb - 1)2 Csup L?n_DW y Mz (Qm,j) = (Nb - 1)2 Csup L?n_DW :
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Polyhedral Measure

We then deduce that, for any vertex X of V,,,

1 _
/L(X, t@mycgm) = M(Nb_ 1)2 CsupL?n Pbr.

Hence, since the total number of polygons involved is at most equal to
2N —1<2N,, we can deduce that

-m
S 1 (X, Py D) <2 (Np = 1) Gy e 7.
XePnl2m Ny

We then have that

m(Dy =2 <z 2 2
Em( oy —2) Z i ()(7 :@n”e@m) < F (Nb - ]-) Csup <00,
XeZ,U2n b

from which we can deduce that the polyhedral measure is a bounded measure.
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Polyhedral Measure

For the sake of simplicity, we restrict ourselves to the case when N, < 7.
For 0 <j < Ny —1, each polygon Pmj (which is convex) contains an inscribed

inf _m
circle, whose Lebesgue measure is greater than ——=—=, where
g Cn
b
inf .
hm = inf hjjs1,m

= n
0<j<(Np—1) N1

and where Cy, > 0.

We recall that “ Mi1m
2-D inf 2-D . Jj+1 J
C,'nfem( W)Shmn ,where C,'nf=(Nb—1) v 05}2}\’2—1 W/(Nb_l)—yﬂ(m) >0-
Consequently,
inf _m m(3-Dy) inf _m m(3-Dy)
A e Cinr € h e Cinr €
Ly (gm,j) > m Sm > inf €m R (QmJ) > m Sm > inf €m .
Cw, Ch, Cw, Cw,
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Polyhedral Measure

We then deduce that, for any vertex X of V,,,

1 Cinf 5$ (3-Dw)

e
_ . : m Ny’
Hence, since the total number of polygons involved is greater than N —1 = -
we can deduce that
-m m(3-Dy )
<z Em Cinf Em
Y o w (X P 20) 2
xer o, 2(N,—1) Np Cp,

We then have that

1 Cinr
>0,
(Np = 1) Np Cp,

em Y W (X P 2a) 2
Xe2Z,U2n
from which, upon passing to the limit when m — 00, we can deduce that the

polyhedral measure is a nonzero measure, and that its total mass satisfies inequal-
ity (% x *).
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Polyhedral Measure

Proof ~ iii. Supp =Ty

This simply comes from the proof given in ii. just above that the measure pu is
nonzero. If u € C (I, R"), we have that

) 1 G
em(Ow =2 } LAX, P, D) u(X 2—¢(minu)>0~
Xe@mua@mu ( ) 0 2(No = 1) Mo Cap AT

Hence, upon passing to the limit when m — oo, we deduce that ¢(u) = I udp >0,
T
and thus, p(u) # 0, from which the claim follows easily.

Indeed, otherwise, if suppu # 'y, there exists M € Ty \ supppu, and thus, by

Urisohn's lemma (see, e.g.,XI), there exists u € C (I ) and an open neighbor-
hood ¥ (M) of M in I, disjoint from supp i and such that

U(M)=1 , O0<swu<l | and Uir, \v (M) =0-

Hence, by the above argument, ¢(u) # 0, which contradicts the fact that M ¢ supp

X\Walter Rudin. Real and Complex Analysis.
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Polyhedral Measure

Proof ~ iv. i is a singular measure

First, note that

@
po (Ty)=0,

because Dy < 2, and, up to a multiplicative positive constant, ,ug coincides with
the 2-dimensional measure on R>. Now, since supp it C [Ny, and ,u‘f (Fy) =0,
it follows that p is supported on a set of Lebesgue measure zero, which precisely
implies that 1 (viewed as a Borel measure on the rectangle [0,1] X [my, My ] in

the obvious way), is singular with respect to the restriction of ,ug to this rectangle.
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Polyhedral Measure

Proof - iv. i is the weak limit of the discrete
measures /i,

Indeed, this follows at once from the fact that, for every u € € ([ ),

j udp = IimJ’ udpy,,
Ty m=00 Jr,,

as desired.

This completes the proof.
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Polyhedral Measure

The Quasi Self-Similar Sequence of Discrete
Polyhedral Measures

The sequence of discrete polyhedral measures (p,,),,en introduced just above,
. e . . *
satisfies the following recurrence relation, for all m € N7,

The sequence of discrete polyhedral measures (pim) ey introduced in Theorem 53
just above, satisfies the following recurrence relation, for all m € N*,

Dy -2 -1
Hm = bW Z /1'm+1o Tj ) (.)
Tjeﬂw
where for Zy = {Ty, -+, Tn,-1} is the nonlinear iterated function system (IFS)

involved.

Note that relation (#) can be viewed as a generalization of classical self-similar
measures, as exposed inX”, page 714.

XM john E. Hutchinson. “Fractals and self similarity” .
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Proof

First, we can note that, for m € N*,

6m+1 _ 1 sm
m+l = 7 Sm>
Np

which ensures that

Lm0y 1 m(Dy-2) NP o (Dw2)

m+1 = T D,-2°¢m =

Ny
We then simply use the result according to which, for 0 <j < N, — 1, the jth
vertex of the polygon &1, 0< k < Ny —1, is the image of the the jth ver-
tex of the polygon &, «—i(n,-1)np by the map T;, where 0 <j < N, — 1 is arbi-
trary. Therefore, there is an exact correspondance between polygons at consecutive
steps m, m+ 1: indeed, polygons at the (m + l)th step of the prefractal approxi-
mation process are obtained by applying each map T;, for 0 < < N, — 1, to the
polygons at the m™ step of the prefractal approximation process. We can then
deduce that

1 (X, Py Pi) 6x =y > wE (X T ( Pa) s T (L)) O
XePmU2m Ti€ Ty Xe Pmi1U2m+1
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IV. Atomic Decompositions

Trace Theorems, and Consequences
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Atomic Decompositions — Trace Theorems, and Consequences

Two-Dimensional Polygonal 7y ,-Net, m € N
Given a strictly positive integer m, we call two-dimensional polygonal 7y n,-net a

tessellation of R? into half-open Np-gons of side lengths at most equal to V2 hy,
which contains the set of polygons

NP -1 NP -2

U @m,j U U Qm,k
Jj=0 k=1

Cl. David (Sorbonne Université - LJLL)
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Atomic Decompositions — Trace Theorems, and Consequences

Given m € N™:
i. For any integer j € {O, e Ny = 1}, and any pair of
vertices (X, Y) € (VN C@m,j)z:

deuet (X, Y) 5 Ny hyy < N, ™70

il. For any integer j € {1, e Ny — 2}, and any pair of
vertices (X, Y) € (VN Q,,,J)zz

deucI(Xa Y) < Nb hm < N;m(z_DW) .
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N XIll
Atoms (Generalization of )

Givens<1,p>1,m € Nandj € {0,---, N’ — 1}, a function f,, ; defined on 'y,
is called a (77, ;. s, p)-atom if the following three conditions are satisfied:

I Suppfn; C P

s 1

INNX € Van Pt |fmi(X)| s g (Pnj)or 7,

iV (XY) € (Vi P )

s—1 1

|fm,j(X) - fm,j(Y)| < deucl(X7 Y) 125 (gzm,j)DW P

XM\ Kabanava. “Besov Spaces on Nested Fractals by Piecewise Harmonic Functions”.
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Atomic Decompositions — Trace Theorems, and Consequences

Similarly, Given s<1, p > 1, m € Nand j € {O,m,N[,"—l}, a function fm,j
defined on I, is called a (7, ;. s, p)-atom if the following three conditions are
satisfied:

I Supp fmj C 2y

s 1

INX € Vyn Pyt |fni(X)| S g (2m))® #;

i Y (X, Y) € (VN 2,,)°

s=1

|fmJ(X) - fm,j(y)| < deucl(X7 Y),Uff (Qm,j)w P
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Atoms Associated with the Weierstrass Function

The restriction of the Weierstrass function to each polygon &, ;, (resp., 2,,;) is
a (Pmj,s,p)-atom (resp., a (2, ;, s, p)-atom).
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Atomic Decompositions — Trace Theorems, and Consequences

Atomic Decomposition of a Function Defined on the
Weierstrass Curve

Given a continuous function f on the Weierstrass Curve, we will say that f admits
an atomic decomposition in the following form:

f = I|m Z 5‘f,m,X fm,X = ||m Z S\f m Fm 5
m—00 m—00
XeZuU2nm XePnlU2n
where, for any m € N, we say that S\f’m is the m™-atomic coefficient.

The functions Fm,X and £, will be called (m, s, p')-atoms.
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Atomic Decompositions — Trace Theorems, and Consequences

Atomic Decomposition of Spline Functions

Given (n, k) € N a spline function of degree k on Ty ,n admits an atomic decom-
position of the form

spline = |im z :\s’m,xsp/inem’X

m—0oo

XeZ,U2nm

(This directly comes from the definition of functions of Zolj (WNZ) as piecewise
polynomial functions.)
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Atomic Decompositions — Trace Theorems, and Consequences

Given the polyhedral measure p on the Weierstrass Curve ', and a continuous
function f on 'y, of atomic decomposition

f = lim Z ’)'\f,m7X Fm,X s

m—00

XeZ2,U2n

we have that

[ fd/l, = lim em(DW_z) Z S‘f,m,X Fm,X,U’(Xa t@m)ogm) :
D2(Tw) m=o0 Xe2,J2n

Cl. David (Sorbonne Université - LJLL) Polyhedral Measures, Atomic decompositions



Atomic Decompositions — Trace Theorems, and Consequences

Such a decomposition makes sense since the set of vertices (V) ey is dense
in Iy . Thus, because we deal with continuous functions, given any point X of the
Weierstrass Curve, there exists a sequence (Xp,) e such that

F(X) = lim £(X,),

m—00

where, for any m € N, X, belongs to the prefractal graph 'y, .
We can naturally write f(X,,) as

F(Xm) = Y F(Ym) Ox, v, (Xan)
Ym€Vn

where 0 is the classical Kronecker symbol; i.e.,
A Ym € Vm : 5mem(ym) = {

This, of course, yields

FX) = lim > F(Y)bx,v, (V)

m—00
Y, eV,
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Atomic Decompositions — Trace Theorems, and Consequences

Now, we can go a little further and, as in™", introduce spline functions 1/’5?,” such
that
€ Vi

m oxy ., YY
VY €Ty : z/)xm(Y)={ X6Ym VY ¢V

m»

and write

F(X)=lim ) F(Ya) X, (Ya),

Ym€Vn

which is nothing but the application of the Weierstrass approximation theorem.
In particular, spline functions are a natural choice for atoms.

XV Robert S. Strichartz. Differential Equations on Fractals, A tutorial.
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Atomic Decompositions — Trace Theorems, and Consequences

LP-Norm of a Function on the Weierstrass Curve
Defined by Means of an Atomic Decomposition

In the sequel, all functions f considered on the Weierstrass Curve are implicitely
supposed to be Lebesgue measurable.

Given p € N*, and a continuous function f on Iy, whose absolute value |f| is
defined by means of an atomic decomposition as

[f] = lim Z Nitmx [ Flmx s

m—00

Xe2Z,U2,

its LP-norm for the measure 1 is given by

1
P
Iflle,) = (j Ifl"du)
(P ) DTy )
1
P
. Dy -3 % o N & =
i (rl:":oe"”‘ Y W (X P 2a) Ay x Pl
XePmU2m
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Atomic Decompositions — Trace Theorems, and Consequences

Besov Space on the Weierstrass Curve

(Extension of the result given by Th. 6, p. 135, inXV)

Givenk € N k<a<k+1,p=1andq=1,the Besovspace BY? (I ) is defined

as the set of functions f € L”(u) such that there exists a sequence (¢,) ey € €7

of nonnegative real numbers such that for every 04 -3m-net, one can find a spline
b

function spline (WN(DW—3)m) € Yol (WN(DW—3)m) satisfying, for all m € N,
b b

(Dy{/—3)ma -
Nb Cm,* (% OndBesov spline)

Jr- e+,

XVAIf Jonsson and Hans Wallin. Function spaces on subsets of R". athematical reports
(Chur, Switzerland). Harwood Academic Publishers, 1984.
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Atomic Decompositions — Trace Theorems, and Consequences

Remark

The atomic decomposition used in"" is obtained by introducing small neighbor-
hoods of the curve under study (union of balls). Our polygonal domain appears
to be a more natural choice. Indeed, unlike the aforementioned balls, the polygons
involved do not overlap with each other, which works better for the required nets.

X\ Kabanava. “Besov Spaces on Nested Fractals by Piecewise Harmonic Functions”.
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Besov Norm

Givenk € Nk<a=<k+1,p=1andq = 1,wecandefine, asin*"", the B2 (I, )-
norm of a function f defined on the Weierstrass Curve as

Illszor,y = Fllig,, +infly it
neN

Yet, in order to obtain a characterization of the Besov space B%'? (') by means
of its norm, it is more useful to deal with the equivalent norm given by

(T = FOI° | 5]
Fllzor,y = WFllwer,) + H L A A :
Fllegoc,y = Ml { rers @iy

This enables one to make the link with discrete and fractal Laplacians, by means
of the fractional difference quotients involved.

XVNans Wallin, “The trace to the boundary of Sobolev spaces on a snowflake”.
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Atomic Decompositions — Trace Theorems, and Consequences
.
Remark ~ 1.

Characterizing Besov spaces on [, by means of the previous norm is directly as-
sociated to the definition of a sequence of (suitably renormalized) discrete
graph Laplacians (A,,),, .. on the sequence of prefractal approximations (I, )
In a sense, it is also connected to the existence of the limit

meN

lim A,

m—00
by means of an equivalent pointwise formula expressed in terms of integrals,
somehow the counterpart, in a way, of the one which is well known in the case
of the fractal Laplacian on the Sierpiriski GasketXVIII XX

XVII
XIX

Jun Kigami. Analysis on Fractals. .
Robert S. Strichartz. Differential Equations on Fractals, A tutorial.
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Atomic Decompositions — Trace Theorems, and Consequences

Remark ~ ii.

The difficulty, in our context, is to obtain an equivalent formulation of the defini-
tion of Besov spaces with the sequence of discrete Laplacians alluded to in part i.
Clearly, a discrete Laplacian corresponds to the usual first difference. Working
with discrete Laplacians, along with atomic decompositions of functions, leads to
expressions of the following form:

o B B Fu(T) = Fnf()|?
lim &7~ ) wEAT, Py 2un) 57 (Y, Piny 2m) Xtm e =Tl

m—00 Dy +(ax=k)q

(T e(@mU2m?, ¥ ;T euct (T,v)
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Atomic Decompositions — Trace Theorems, and Consequences

Theorem: Characterization of Besov Spaces><><

Given k € N, k<a<k+1, p=1and g =1, and a continuous function f given
by means of an atomic decomposition of the form

f= lim Z Af,m,X fm,X
m— 00

Xe2z2, U2,

belongs to the Besov space B2? (I, ) if and only if the following two conditions
are satisfied,

1 s-1
(3-00) {4 (5= 52 )} + 2= D)0y + (a- D) <2, (Fondaue)
v
and
Dy Dy,
3_DW+TSS, (‘fonde)~

XXClaire David and Michel L. Lapidus. lterated fractal drums ~ Some New Perspectives:
Polyhedral Measures, Atomic Decompositions and Morse Theory.
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Atomic Decompositions — Trace Theorems, and Consequences

Trace of an L}OC(]R{Z) Function on the Weierstrass
Curve

Along the lines ofXX|, page 15, or™", we will say that an L,loc(]Rz) function f is
strictly defined at a vertex X of the Weierstrass Curve if the following limit exists

and is given by

XXII

f(X) = lim L

f(Y) < .
%0 17 (X, P Z) ) f()<eo

Y<X
This enables us to define the trace fir,, of the function f on the Weierstrass Curve,
via

VX €Ty :fir,(X)=Ff(X)-

The trace f of an L,loc(Rz) function thus naturally admits an atomic decomposition.

XXIAlf Jonsson and Hans Wallin. Function Spaces on Subsets of R". Mathematical Reports,
Vol. Il, Part 1. .
XX ans Wallin. “The trace to the boundary of Sobolev spaces on a snowflake”.

Cl. David (Sorbonne Université - LJLL) Polyhedral Measures, Atomic decompositions



Atomic Decompositions — Trace Theorems, and Consequences

Associated Sobolev Space

We set
my = min #(t) , My = max #(t) , Qu=[0,1]1X%X[my,My]-
te[0,1] te[0,1]
Then,

ryyCnyCRz,

and, given kK € N, and p = 1,
WY () ={f e 1”(Q)) ,Yask,D*f e L”(Q,)},

where L” (5927,/) denotes the Lebesgue space of order p on QW, while, for the multi-

index a < k, D f is the classical partial derivative of order «, interpreted in the
weak sense.
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Atomic Decompositions — Trace Theorems, and Consequences

Theorem: The Trace of Sobolev Spaces as Besov
Spaces (counterpart of the corresponding one
obtained in™"", Chapter V1)

Given a positive integer k, and a real number p = 1, we set

2— Dy
Bk,p =k - p .
We then have that
WE (), = BE ()

XXMAIE Jonsson and Hans Wallin. Function spaces on subsets of R". athematical reports

(Chur, Switzerland). Harwood Academic Publishers, 1984.
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Atomic Decompositions — Trace Theorems, and Consequences

Corollary: Order of the Fractal Laplacian

In the case where k = p = 2, provided that

1—Dyy+(2—Dw) (2Dw—3)
2(3-Dy) '

s>1+ Dy

we then have that

2 2,2
W (29)r,, = Bg,, (Ty),

where

2-Dy 1 Inx
Pr2=2-—5— =25, > %

Consequently, by analogy with the classical theories, the Laplacian on the Weier-
strass Curve arises as a differential operator of order (3, , € ]2,3].
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Atomic Decompositions — Trace Theorems, and Consequences

Connection with the Optimal Exponent of Holder
Continuity

We note that

o
Bap =2+ 2/// )
. . In\ . .
where the Codimension .y =2 - D, = N € 10,1[ is the best (i.e., op-
b

timal) Holder exponent for the Weierstrass function, as was initially obtained by

G. H. Hardy inXXIV), and then, by a completely different method — geometrically —
. XXV
in

XXIVGodfrey Harold Hardy. “Weierstrass's Non-Differentiable Function”. [n: Transactions of the
American Mathematical Society 17.3 (1916), pp. 301-325.
XXV Claire David and Michel L. Lapidus. Weierstrass fractal drums - | - A glimpse of complex

dimensions. 2027,
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The Polyhedral Measure In Real Life

The Polyhedral Measure In Real Life
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The Polyhedral Measure In Real Life

The Polyhedral Measure In Real Life

~» Nature produces many fractal-like structures. Until now, the tools of fractal
geometry have been little used to model the morphogenesis of these living forms.

~ The acellular model organism Physarum polycephalum grows in a network
and fractal branched way.

30mm i A 7 o ¥

(a) P. polycephalum plasmodium. (b) Vein network.
© A. Dussutour & C. Oettmeier.
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The Polyhedral Measure In Real Life

~» The change of shape in Physarum polycephalum corresponds to a change of
fractal (complex) dimensions (undergoing work with A. Dussutour, H. Henni,
C. Godin).

~» Just as in our mathematical theory.

~ What is the growth law?

~ Can we find the underlying variational principle?
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Forthcoming: The Magnitude

~ Counterpart of the (topological) Euler characteristic™"".

~ New method for numerically determining the Complex Dimensions of a

XXVII
fractal .

~» Also connected to the polyhedral measure.

XV Tom Leinster. “The magnitude of metric spaces”. |n: Documenta Mathematica 16 (2013),

pp. 857-905. 1SSN: 1431-0635.
XVIC e David and Michel L. Lapidus. Fractal Complex Dimensions ~ A Bridge to Magnitude.
2023.
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