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Dulac germs

Let f : (0, d)→ R be analytic on (0, d), d > 0, such that

f ∼ λzα +
∑
i≥1

zαiPi(− log z), ←− Dulac series

where:
(αi) is strictly increasing sequence of real numbers tending to +∞
such that αi > α > 0,
Pi are polynomials with real coefficients and λ > 0.
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Properties of Dulac germs

Extension of Dulac germs to sufficiently large complex domains →
standard quadratic domains

κ

C

C+
RC

Slika: κ
(
C+), where κ(ζ) = ζ + C(ζ + 1) 1

2

quasi-analyticity property −→ Dulac series completely determines
related Dulac germ
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Normalization problem

To solve the equation

ϕ(f (z)) = (ϕ(z))α ,

for the fixed real α > 1.

f can be transseries, C r -map, analytic map,...

The first goal: solving the normalization equation in the class of
logarithmic transseries

The second goal: solving the normalization equation in the class of
(complex) Dulac germs
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Motivation

Theorem (Böttcher Theorem)
Let f ∈ Diff(C, 0) be a strongly hyperbolic complex analytic germ of
diffeomorphism at zero, i.e., f (z) = zn + o(zn), for n ≥ 2. There exists a
parabolic analytic change of variables ϕ ∈ Diff(C, 0), ϕ(z) = z + o(z),
such that ϕ(f (z)) = (ϕ(z))n.
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Logarithmic transseries

z is a formal variable at zero
Let `1 := − 1

log z and `n := `n−1 ◦ `1, n ∈ N≥1

A logarithmic transseries f is a formal sum of type

f =
∑

(α,n1,...,nk)∈R×Zk

aα,n1,...,nk · zα`n1
1 · · · `

nk
k =

∑
α∈R

zαRα

with well-ordered support (lexicographic order on R× Zk) whose
minimum is strictly bigger than (0, 0, . . . , 0).
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Composition

Main goal for the definition of the composition −→ Lk , k ∈ N,
should be closed for the composition
LH

k - set of all transseries f = λzα + h.o.t., α > 0, λ > 0
We say that f ∈ LH

k is:
parabolic if f = z + h.o.t.,
hyperbolic if f = λz + h.o.t., for λ > 0, λ 6= 1,
strongly hyperbolic if f = λzα + h.o.t., for λ > 0, α > 0, α 6= 1.

Formal Taylor theorem −→ well-defined formal composition on the
set LH

k :

f ◦ (λzα + g) := f (λzα) +
∑
i≥1

f (i)(λzα)
i! g i
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Three steps for solving normalization equation for Dulac
germs

Dulac germ Dulac series

analytic normalization formal normalization

asymp. expansion

asymp. expansion
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Three steps for solving normalization equation for Dulac
germs

finding formal solution in the class of Dulac series

formal solution in larger class of logarithmic transseries

finding analytic solution for Dulac germs

finding analytic solution in the larger class of analytic maps with
strongly hyperbolic logarithmic bounds

connection of formal solution and the analytic solution via certain homological
equation
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Step 1: formal solution in the class of
Dulac series
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Normalization theorem for strongly hyperbolic logarithmic
transseries

Theorem
Let f ∈ LH

k , f = zα + h.o.t., α ∈ R>0, α 6= 1, be a strongly hyperbolic logarithmic
transseries. Then:

There exists a unique solution ϕ ∈ L0
k of the normalization equation:

ϕ ◦ f ◦ ϕ−1 = zα.

If α > 1, then, for every initial condition h ∈ L0
k , the Böttcher sequence(

z
1

αn ◦ h ◦ f ◦n
)

n

converges to the normalization ϕ in the weak topology on L0
k as n tends to +∞.
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Normalization theorem for strongly hyperbolic Dulac series

Theorem
Let f = zα + h.o.t., α ∈ R>0, α 6= 1, be a strongly hyperbolic Dulac
series. Then there exists a unique parabolic Dulac series ϕ such that

ϕ ◦ f ◦ ϕ−1 = zα.
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Step 2: finding analytic solution for Dulacgerms
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Normalization of analytic maps with strongly hyperbolic
logarithmic bounds
Suppose that map f defined on domain D ⊆ C+ has the following
asymptotic bound:

f (ζ) = αζ + o(L−εk ), as <(ζ)→ +∞ uniformly on DC .

for α > 1, ε > 0, k ∈ N.
Here, L1, . . .Lk are iterated logarithms.

Question: Can we find some sufficient conditions on D such that there
exists R > 0 such that

DR := D ∩ ([R,+∞)× R)

is f -invariant ?

Solution: domains of type (α, ε, k)
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C

RC

Sα,ε,k(ζ)

αζ
ζ

f (ζ)

R
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Proposition
Let α ∈ R>1, ε ∈ R>0 and k ∈ N. Let D ⊆ C be a domain of type
(α, ε, k) and let f : DC → C, C > exp◦k(0), be an analytic map with the
following asymptotic behaviour:

f (ζ) = αζ + o(L−εk ), as <(ζ)→ +∞ uniformly on DC .

Here,

L1 := log (ζ) , . . . ,Lk := log (Lk−1) ,

where log represents the principal branch of the logarithm. Then, for every
R > C sufficiently large, the domain DR is f -invariant.
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Linearization theorem for maps on admissible domains

Theorem
Let α ∈ R>1, ε ∈ R>0 and k ∈ N. Let D ⊆ C+ be a domain of type (α, ε, k). For
C > exp◦k(0), let f : DC → C be an analytic map such that

f (ζ) = αζ + o(L−εk ), as <(ζ)→ +∞ uniformly on DC .

Then:
(Existence) For a sufficiently large R > exp◦k (0) there exists an analytic
normalizing map ϕ on the f -invariant subdomain DR ⊆ D. That is, ϕ satisfies

(ϕ ◦ f )(ζ) = α · ϕ(ζ), for all ζ ∈ Df
R .

Moreover, ϕ is the uniform limit on DR of the Böttcher sequence
( 1
αn f ◦n

)
n
in the

ζ-chart.
(Asymptotics) The normalization ϕ is tangent to identity, i.e., ϕ(ζ) = ζ + o(1),
uniformly on DR ⊆ C+, as <(ζ)→ +∞.
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Step 3: connection of formal solution and
the analytic solution via certain

homological equation
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Normalization of strongly hyperbolic (complex) Dulac
germs

Theorem
Let f be a strongly hyperbolic complex Dulac germ and let
f̂ (ζ) = αζ + o(1), α ∈ R>1, be its asymptotic expansion in the ζ-chart.
Then:

There exists the unique parabolic complex Dulac germ ϕ (given in the
ζ-chart) which is a solution of the normalization equation:

ϕ ◦ f = α · ϕ.

Furthermore, if f is a real Dulac germ, so is ϕ.
ϕ ∼ ϕ̂, uniformly as <(ζ)→ +∞, where ϕ̂(ζ) is the unique solution
of the formal normalization equation.
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Steps of the proof:
Transition to the logarithmic chart ζ := − log z :

(ϕ ◦ f )(z) = (ϕ(z))α ⇐⇒ (ϕ ◦ f )(ζ) = α · ϕ(ζ)

f̂ (z) = zα +
∑
i≥1

zαiPi (− log z) ⇐⇒ f̂ (ζ) = α · ζ +
∑
i≥1

exp(−ζβi )Qi (ζ)

Suppose that

ϕ̂ = ζ +
+∞∑
n=1

exp(−ζβn)Rn(ζ)

Then write ϕ0 := ζ and

ϕn := ζ +
n∑

i=1

exp(−ζβi )Ri (ζ)

Note that ϕ̂ =
∑
n∈N

ϕn.
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Sketch of the proof:

((ϕ− ϕn) ◦ f )(ζ)− α · (ϕ− ϕn)(ζ) = o
(
e−(βn+νn)ζ) ,

Solving the homological equation ψ ◦ f (ζ)− α · ψ(ζ) = h = o(e−νζ), ν > 0, on a
standard quadratic domain, uniformly as Re ζ → +∞

ψ(ζ) := −
+∞∑
n=0

1
αn+1 · h (f ◦n(ζ))

Estimation and uniqueness of the solution ψ:

ψ(ζ) = O(e−νζ),

uniformly as <(ζ)→ +∞.

→ ψ = ϕ− ϕn → (ϕ− ϕn)(ζ) = O
(
e−(βn+νn)) .
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Thank you for your attention!
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