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Introduction The main goal

Introduction

We are interested in knowing the probability of existence of limit cycles for
the planar family

ẋ = Af (x) + Bg(y),

ẏ = Cf (x) + Dg(y),

where f and g smooth functions satisfying f (0) = g(0) = 0.

It seems plausible to require that the real random variables A,B,C ,D be
independent identically distributed (iid) and continuous.

We will focus on the case g(y) ≡ y .
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Introduction Preliminaries on probability

Distribution and probability space of the random variables

Consider
ẋ = Af (x) + Bg(y), ẏ = Cf (x) + Dg(y),

where the random variables A,B,C ,D are iid continuous random variables

A,B,C ,D ∼ N(0, σ2)

density function f (x) = 1√
2πσ2

e−
x2

2σ2 for each one.

Give rise to a random vector field (A,B,C ,D) with a uniform distribution
on S3:

(Ω,F,P) with sample space Ω = R4, F the σ-algebra generated by the
open sets of R4 and P : F → [0, 1] is the probability function with joint
density function f (a, b, c , d) = 1

4π2 e
−(a2+b2+c2+d2)/2, where for simplicity

we take variance one in each marginal density function.
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Introduction Preliminaries on probability

Obtaining probabilities

If we want to obtain the phase portrait probability of having a saddle, for
instance, for the linear random differential equation

ẋ = Ax + By , ẏ = Cx + Dy ,

we have to compute

P(AD − BC < 0) =
1

4π2

∫
U

e−
a2+b2+c2+d2

2 da db dc dd ,

where U := {(a, b, c, d) ∈ R4 : ad − bc < 0}.

In general, depending on U, this integral can be calculated analytically or,
if not, approximated using Monte Carlo method.

Since the probability density function is positive, any non-empty event de-
scribed by algebraic inequalities is measurable and has positive probability;
whereas, measurable events such that their description is by a non-trivial
algebraic equality have zero probability.
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Introduction Related works

On planar random systems using a similar approach:

A. Cima, A. Gasull, V. Mañosa. Phase portraits of random planar
homogeneous vector fiels. Qual. Theory Dyn. Syst. (2021)

A. Cima, A. Gasull, V. Mañosa. Stability index of linear random
dynamical systems. Elec. J. of Qual. Theory of Differential Equations,
Paper No. 15 (2021)

B. Coll, A. Gasull, R. P. Probability of occurrence of some planar
random quasi-homogeneous vector fields. Mediterranean Journal of
Mathematics (2022)

B.K. Pagnoncelli, H. Lopes and C.F.B. Palmeira. Sampling linear
ODE. (in Portuguese). Matemática Universitária (2009)
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Main results - Deterministic case Existence of limit cycles

Statements of the main results in the deterministic case

Theorem 1

Consider system

ẋ = af (x) + bg(y), ẏ = cf (x) + dg(y),

with f and g smooth, such that f (0) = g(0) = 0. Then:

(i) If abcd ≤ 0, it has not limit cycles.

(ii) Assume that f and g are analytic, f (x) = x2l−1 + O(x2l) and
g(y) = y2k−1 + O(y2k), with k 6= l . Then, there exist a, b, c , d such
that it has at least one limit cycle surrounding the origin, which
whenever it exists is hyperbolic.

(iii) There exist f and g such that for some values of a, b, c and d , the
system has more than one limit cycle surrounding the origin.
Moreover, the same also holds with g(y) ≡ y .
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Main results - Deterministic case Existence of limit cycles

case g(y) ≡ y :

Theorem 2

Consider system

ẋ = af (x) + by , ẏ = cf (x) + dy ,

with ad 6= 0. Let f (x) be the polynomial
f (x) = αxk +

∑
k<i<m fix

i + βxm, with αβ 6= 0, k ≤ m odd integers and
m > 1. Assume moreover that x = 0 is the unique real root of f (x) = 0.

(i) If β(ad − bc) ≤ 0 then it has no periodic orbits.

(ii) If β(ad − bc) > 0 and, either k = 1 and βa(aα + d) > 0, or k > 1
and βad > 0, then it has zero or an even number of limit cycles.

(iii) If β(ad − bc) > 0 and, either k = 1 and βa(aα + d) < 0, or k > 1
and βad < 0, then it has an odd number of limit cycles.

In all the cases, each limit cycle is counted with its own multiplicity.
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Main results - Deterministic case Number of limit cycles

Theorem 3

Consider system

ẋ = af (x) + by , ẏ = cf (x) + dy ,

where f is smooth and f (0) = 0. Assume that

M(x) = 2af ′(x)F (x)− a(f (x))2 − dxf (x) + 2dF (x)

does not change sign and vanishes at isolated points, where F ′ = f and
F (0) = 0. Let K be the number of bounded intervals (counting also
intervals degenerated to a point as intervals) of the closed set

{x ∈ R : ∆(x) = (af (x) + dx)2 − 8(ad − bc)F (x) ≥ 0}.

Then the system has at most K limit cycles, all of them hyperbolic.
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Main results - Deterministic case Uniqueness of the limit cycle

Corollary 4

Consider system

ẋ = af (x) + by , ẏ = cf (x) + dy ,

and assume that

M(x) = 2af ′(x)F (x)− a(f (x))2 − dxf (x) + 2dF (x)

does not change sign and vanishes at isolated points. Assume also that
the origin is the only equilibrium point of the system. Then it has at most
one limit cycle, and when it exists, it is hyperbolic.
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Main results - Deterministic case Uniqueness of the limit cycle

Corollary 5

Consider system

ẋ = ax2n−1 + by , ẏ = cx2n−1 + dy ,

where n > 1 is an integer. It has at most one limit cycle and, when it
exists, it is hyperbolic. Moreover, it exists if and only if ad − bc > 0 and
ad < 0 and its stability is given by the sign of −d .
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Main results - Deterministic case Uniqueness of the limit cycle

Proposition 6

System
ẋ = a(αx + x3) + by , ẏ = c(αx + x3) + dy ,

with α ≥ 0 has at most one limit cycle. Moreover the limit cycle exists if
and only if ad − bc > 0 and a(aα+ d) < 0 and its stability is given by the
sign of −(aα + d).
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Main results - Random case Number of limit cycles

Theorem (part 1)

Consider random system

ẋ = Af (x) + By , ẏ = Cf (x) + Dy ,
where f (x) = αxk +

∑
k<i<m fix

i + βxm, with αβ 6= 0, k ≤ m odd
integers, m > 1, and A,B,C ,D iid random variables with distribution
N(0, 1). Assume also that x = 0 is the unique real root of f (x) = 0. Then

(i) When k > 1 the probability of having an odd number of limit cycles is
1/8, and the probability of not having limit cycles or to have an even
number is 7/8.

(ii) When k = 1 and β > 0, the probability of having an odd number of
limit cycles is P+(α) ≤ 1/2, and the probability of not having limit
cycles or to have an even number is 1− P+(α).

(iii) When k = 1 and β < 0, the same results that in item (ii) hold but
changing P+ by P−, where P−(α) = P+(−α).

In all the cases, each limit cycle is counted with its own multiplicity.
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Main results - Random case Number of limit cycles

Theorem (part 2)

The function P+ : R→ (0, 1/2) is

P+(α) =
1

4π2

∫∫∫∫
T (α)

e−
a2+b2+c2+d2

2 da db dc dd ,

where T (α) = {(a, b, c , d) : ad − bc > 0, a(aα + d) < 0}, a decreasing
function that satisfies

lim
α→−∞

P+(α) = 1/2, P+(0) = 1/8, lim
α→+∞

P+(α) = 0,

α -100 -10 -1 0 1 10 100

MC-106 0.4984 0.4814 0.3127 0.1255 0.0624 0.0128 0.0016

MC-108 0.49829 0.48129 0.31247 0.12498 0.06254 0.01303 0.00155

Table: Some approximated values of P+(α) obtained by Monte Carlo (MC)
simulation taking 106 and 108 random systems. We know that
P+(0) = 1/8 = 0.125.
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Main results - Random case Number of limit cycles

Figure: Numerical approximation of P+(α) using Monte Carlo simulation with
samples of N = 104 (left) and N = 106 (right) points for 101 equidistributed
values of α in [−10, 10]. Expected error of order 10−3 and 10−4, resp.

Samples of the random vector (A,B,C ,D) checking how many of them, J,
satisfy AD − BC > 0 and A(αA + D) < 0. Then P+(α) ≈ J/N.

Due to the law of large numbers and the law of iterated logarithm, this
approach gives an absolute error of order O(((log logN)/N)1/2).
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Main results - Random case Number of limit cycles

Corollary

Consider random system

ẋ = Axk + By , ẏ = Cxk + Dy ,

where k > 1 is an odd integer and A,B,C ,D are iid random variables with
distribution N(0, 1). Then:

the probability of having one limit cycle is 1/8, and

the probability of not having limit cycles is 7/8.
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Main results - Random case Small probability of having limit cycle

Proposition

Consider random system

ẋ = A(αx + x3) + By , ẏ = C (αx + x3) + Dy ,

with α > 0 and A,B,C ,D iid random variables with distribution N(0, 1).
Then, for each ε > 0 there exists α big enough such that it has limit
cycles with a positive probability, smaller that ε. Moreover, when the limit
cycle exists it is unique.

Probability of existence of limit cycles 18 / 35



Idea of the proofs - Deterministic case Existence of limit cycles

Theorem 1.

Consider system

ẋ = af (x) + bg(y), ẏ = cf (x) + dg(y),

with f and g smooth, such that f (0) = g(0) = 0. Then:

(i) If abcd ≤ 0, it has not limit cycles.

(ii) Assume that f and g are analytic, f (x) = x2l−1 + O(x2l) and
g(y) = y2k−1 + O(y2k), with k 6= l . Then, there exist a, b, c , d such
that it has at least one limit cycle surrounding the origin, which
whenever it exists is hyperbolic.

(iii) There exist f and g such that for some values of a, b, c and d , the
system has more than one limit cycle surrounding the origin.
Moreover, the same also holds with g(y) ≡ y .
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Idea of the proofs - Deterministic case Existence of limit cycles

Proof of item (i): Let F and G be such that F ′(x) = f (x) and G ′(y) = g(y).
Taking H(x , y) = cF (x)− bG (y), then

d

dt
H(x , y) = Ḣ(x , y) = cf (x)ẋ − bg(y)ẏ = acf 2(x)− bdg2(y).

If abcd < 0 ⇒ H is a Lyapunov function.
Proof of item (ii): We prove that for ε small enough, system

ẋ = εαf (x) + g(y), ẏ = −f (x) + εδg(y),

has at least one limit cycle by studying the corresponding Abelian integral:

I (h) = −δ
∫
γh

g(y)dx + α

∫
γh

f (x)dy

= δ

∫∫
Int(γh)

g ′(y)dx dy + α

∫∫
Int(γh)

f ′(x)dx dy ,

where γh is the oval of the level curve H(x , y) = F (x) + G (y) = h sur-
rounding the origin and Int(γh) denotes the region surrounded by γh.
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Idea of the proofs - Deterministic case Existence of limit cycles

Continuation of the proof of item (ii): The key point is that

I (h) = δ

∫∫
Int(γh)

g ′(y)dx dy + α

∫∫
Int(γh)

f ′(x)dx dy ,

and ∫∫
Int(γh)

f ′(x)dx dy ∼ C1 h
1+(l−k)/(2kl),∫∫

Int(γh)
g ′(y)dx dy ∼ C2 h

1+(k−l)/(2kl),

in a neighborhood of h = 0 for h > 0. As a consequence, near h = 0,

I (h) ∼ K1h
1+(l−k)/(2kl) + K2h

1+(k−l)/(2kl),

when k 6= l , it has at most a simple zero (ECT-system) and there are
combinations for which it exists.
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Idea of the proofs - Deterministic case Existence of limit cycles

Proof of item (iii): This is a consequence of the following proposition that
is proved by computing Lyapunov constants, Lj , j = 0, 1, 2, . . .

Proposition

(i) There are systems with f a polynomial of degree 4 and g(y) ≡ y ,
having at least 3 hyperbolic limit cycles surrounding the origin.
(ii) There are systems with f and g polynomials of degree 3, having at
least 3 hyperbolic limit cycles surrounding the origin.

The only computational difficulty is that our system with a weak focus at
the origin writes as

ẋ = y + rx + P(x , y), ẏ = −x − ry + Q(x , y), |r | < 1,

instead of the usual canonical form. We obtain then Lyapunov constants by
looking for a Lyapunov function of the form (sugg. by Torregrosa)

H(x , y) =
∑
k≥2

Hk(x , y), with H2(x , y) = x2 + y2 + 2rxy .
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Idea of the proofs - Deterministic case Existence of limit cycles

Theorem 3

Consider system

ẋ = af (x) + by , ẏ = cf (x) + dy ,

where f is smooth and f (0) = 0. Assume that

M(x) = 2af ′(x)F (x)− a(f (x))2 − dxf (x) + 2dF (x)

does not change sign and vanishes at isolated points, where F ′ = f and
F (0) = 0. Let K be the number of bounded intervals (counting also
intervals degenerated to a point as intervals) of the closed set

{x ∈ R : ∆(x) = (af (x) + dx)2 − 8(ad − bc)F (x) ≥ 0}.

Then the system has at most K limit cycles, all of them hyperbolic.
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Idea of the proofs - Deterministic case Existence of limit cycles

Idea of the proof:
We follow the ideas developed by Gasull and Giacomini to look for a suitable
Dulac function, 1/V , to apply Bendixson-Dulac theorem to our system in a
suitable region. We start with the well known formula

div
(P
V
,
Q

V

)
=

V div(P,Q)− VxP − VyQ

V 2
=:

R

V 2
.

The first key idea is to search for a function

V (x , y) = y2 + v(x)y + w(x),

for some v and w , such that when we compute R we obtain

R(x , y) =
(ad − bc)

b2
M(x),

and since by hypothesis M does not change sign and vanishes only at isolated
points, we can apply Bendixson-Dulac Theorem and the maximum number
of limit cycles is given by the number of holes of R2 \ {V (x , y) = 0}.
Since V is quadratic on y , this number is controlled by the number of
intervals of the discriminant of V (x , y) with respect to y , that is the ∆(x)
of the statement.
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Idea of the proofs - Deterministic case Existence of limit cycles

Corollary 4

Consider system

ẋ = af (x) + by , ẏ = cf (x) + dy ,

and assume that

M(x) = 2af ′(x)F (x)− a(f (x))2 − dxf (x) + 2dF (x)

does not change sign and vanishes at isolated points. Assume also that
the origin is the only equilibrium point of the system. Then it has at most
one limit cycle, and when it exists, it is hyperbolic.

In this case, the uniqueness of the critical point implies that R2\{V (x , y) =
0} has at most 1 hole ⇒ [Theorem 3] at most one limit cycle.
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Idea of the proofs - Deterministic case Existence of limit cycles

Deterministic systems: uniqueness of the limit cycle

Corollary

Consider system

ẋ = ax2n−1 + by , ẏ = cx2n−1 + dy ,

where n > 1 is an integer. It has at most one limit cycle and, when it
exists, it is hyperbolic. Moreover, it exists if and only if ad − bc > 0 and
ad < 0 and its stability is given by the sign of −d .

When ad > 0, the classical Dulac criterion applies since the divergence of
the vector field does not change sign.
When ad < 0, from Theorem 3, K = 1.
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Idea of the proofs - Deterministic case Existence of limit cycles

Proposition 6

System
ẋ = a(αx + x3) + by , ẏ = c(αx + x3) + dy ,

with α ≥ 0 has at most one limit cycle. Moreover the limit cycle exists if
and only if ad − bc > 0 and a(aα+ d) < 0 and its stability is given by the
sign of −(aα + d).

It follows by writing the system as a Liénard equation and then applying
some classical results on these equations.
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Idea of the proofs - Random case

Theorem (part 1)

Consider random system

ẋ = Af (x) + By , ẏ = Cf (x) + Dy ,
where f (x) = αxk +

∑
k<i<m fix

i + βxm, with αβ 6= 0, k ≤ m odd
integers, m > 1, and A,B,C ,D iid random variables with distribution
N(0, 1). Assume also that x = 0 is the unique real root of f (x) = 0. Then

(i) When k > 1 the probability of having an odd number of limit cycles is
1/8, and the probability of not having limit cycles or to have an even
number is 7/8.

(ii) When k = 1 and β > 0, the probability of having an odd number of
limit cycles is P+(α) ≤ 1/2, and the probability of not having limit
cycles or to have an even number is 1− P+(α).

(iii) When k = 1 and β < 0, the same results that in item (ii) hold but
changing P+ by P−, where P−(α) = P+(−α).

In all the cases, each limit cycle is counted with its own multiplicity.
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Idea of the proofs - Random case

Theorem (part 2)

The function P+ : R→ (0, 1/2) is

P+(α) =
1

4π2

∫∫∫∫
T (α)

e−
a2+b2+c2+d2

2 da db dc dd ,

where T (α) = {(a, b, c , d) : ad − bc > 0, a(aα + d) < 0} is a decreasing
function that satisfies

lim
α→−∞

P+(α) = 1/2, P+(0) = 1/8, lim
α→+∞

P+(α) = 0,

Probability of existence of limit cycles 29 / 35



Idea of the proofs - Random case

The probabilities are obtained by studying the corresponding integrals

P+(α) =
1

4π2

∫∫∫∫
T (α)

e−
a2+b2+c2+d2

2 da db dc dd ,

where the sets

T (α) = {(a, b, c , d) : ad − bc > 0, a(aα + d) < 0},

are defined by the conditions of existence of limit cycles fixed in previous
results for the deterministic systems.
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Idea of the proofs - Random case

Corollary

For random system ẋ = Axk + By , ẏ = Cxk + Dy , k > 1 odd,

the probability of having one limit cycle is 1/8, and

the probability of not having limit cycles is 7/8.

This result is a consequence of previous theorem because for the determin-
istic system

ẋ = axk + by , ẏ = cxk + by ,

the limit cycle (which is unique and hyperbolic) exists ⇔ ad − bc > 0 and
ad < 0. In this case it is not difficult to prove that

1

4π2

∫∫∫∫
{(a,b,c,d) : ad−bc>0, ad<0}

e−
a2+b2+c2+d2

2 da db dc dd =
1

8
,
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Idea of the proofs - Random case

Proposition

Consider random system

ẋ = A(αx + x3) + By , ẏ = C (αx + x3) + Dy ,

with α > 0 and A,B,C ,D iid random variables with distribution N(0, 1).
Then, for each ε > 0 there exists α big enough such that it has limit
cycles with a positive probability, smaller that ε. Moreover, when the limit
cycle exists it is unique.
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Idea of the proofs - Random case

Proposition

Consider random system

ẋ = A(αx + x3) + By , ẏ = C (αx + x3) + Dy ,

with α > 0 and A,B,C ,D iid random variables with distribution N(0, 1).
Then, for each ε > 0 there exists α big enough such that it has limit
cycles with a positive probability, smaller that ε.

we use the uniqueness of limit cycle for the associated deterministic system,
that it exists if and only if ad − bc > 0, a(aα + d) < 0, and that

lim
α→∞

P+(α) = 0.

This is so, because the set T (α) = {(a, b, c , d) : ad−bc > 0, a(aα+d) <
0}, shrinks to the empty set when α→∞.
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Idea of the proofs - Random case

Thank you very much for your attention
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Idea of the proofs - Random case

Let us prove (i). We define the new iid random variables X = AD and
Y = BC . Note that the density function of the new variables X and Y
is an even function. Then the joint density function of (X ,Y ), h(x , y), is
symmetric respect to the origin, that is h(x , y) = h(−x ,−y).

From Theorem 2, the probability of having an odd number of limit cycles is

p = P(β(X − Y ) > 0, βX < 0).

Notice X −Y and Y −X have the same distribution, and the same happens
with X and −X . Thus, independently of the sign of β,

p = P(X − Y > 0,X < 0) = P(X − Y < 0,X > 0).

Finally,

P(X − Y > 0,X < 0) =

∫∫
{(x ,y)∈R2 : x−y>0,x<0}

h(x , y)dx dy =
1

8
.

Again by Theorem 2, the probability of having none or an even number of
limit cycles is the probability of the complementary set, modulus a set of
zero measure, that is 7/8.
(ii) By items (ii) and (iii) of Theorem ?? to compute P+(α) we simply have
to compute P+(α) = P(AD − BC > 0, A(Aα+ D) < 0) which is given by

P+(α) =
1

4π2

∫∫∫∫
T (α)

e−
a2+b2+c2+d2

2 da db dc dd ,

where we recall that

T (α) = {(a, b, c , d) : ad − bc > 0, a(aα + d) < 0},
which is precisely the integral expression given in the statement. The fact
that P+(0) = 1/8 is simply because when α = 0 the set T (0) coincides
with the one considered in item (i) above. Moreover, the properties of the
function α → P+(α) are a consequence of the shape of the set T (α). It
shrinks when α increases and, in fact,

lim
α→−∞

T (α) = {ad − bc > 0} and lim
α→+∞

T (α) = ∅.

Finally, to prove item (iii) we have to compute P−(α) that is the probability
of the event β(AD−BC ) > 0 and βA(Aα+D) < 0. Therefore it is equivalent
to prove that AD−BC < 0 and A(−αA−D) < 0. Since AD−BC has the
same distribution that BC −AD and −D the same distribution that D, we
obtain that P−(α) can also be computed as the probability of occurrence of
the event AD − BC > 0 and A(−αA + D) < 0, that is precisely P+(−α),
as we wanted to show.
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