\star The research was funded by CSF grants PZS-2019-02-3055 and UIP-2017-05-1020.

ε -neighborhoods of orbits in unfoldings

Maja Resman (with R. Huzak, Hasselt University, P. Mardešić, University of Burgundy, and V. Županović, University of Zagreb)

10/05/2023, Bifurcations of Dynamical Systems and Numerics, Zagreb

Parabolic and hyperbolic orbits on \mathbb{R}_+

• (attracting) parabolic germ

$$f(z) = x - ax^{k+1} + \ldots \in \text{Diff}(\mathbb{R}_+, 0), a > 0, k \in \mathbb{N},$$

$$f^j(x_0) \sim j^{-1/k}, \ j \to \infty$$

• (attracting) hyperbolic germ

$$f(x) = \lambda x + \dots, 0 < \lambda < 1,$$

$$f^j(x_0) \sim \lambda^j, \ j \to \infty$$

.

Orbit of f with initial point $x_0 \in (\mathbb{R}_+, 0)$:

$$\mathcal{O}_f(x_0) := \{ x_n := f^{\circ n}(x_0) : n \in \mathbb{N}_0 \}.$$

Fractal data: ε -neighborhoods of orbits of parabolic and hyperbolic diffeomorphisms

• a parabolic orbit of *multiplicity* k:

$$\ell(\mathcal{O}^f(x_0)_{\varepsilon}) \sim (2/a)^{\frac{1}{k+1}} \frac{k+1}{k} \varepsilon^{\frac{1}{k+1}} + \dots + c(\rho, a)\varepsilon(-\log\varepsilon) + o(\varepsilon(-\log\varepsilon)), \ \varepsilon \to 0,$$

$$\dim_B(\mathcal{O}^f(x_0)) = 1 - \frac{1}{k+1}, \ \mathcal{M}(\mathcal{O}^f(x_0)) = (2/a)^{\frac{1}{k+1}} \frac{k+1}{k},$$

a hyperbolic orbit:

$$\ell(\mathcal{O}^f(x_0)_{\varepsilon}) \sim a(\lambda) \cdot \varepsilon(-\log \varepsilon) + o(\varepsilon(-\log \varepsilon)), \ \varepsilon \to 0,$$

$$\dim_B(\mathcal{O}^f(x_0)) = 1 - 1 = 0, \ \mathcal{M}(\mathcal{O}^f(x_0)) = +\infty,$$

Continuous time length of ε -neighborhoods of orbits

- $\ell(\mathcal{O}^f(x_0)_{\varepsilon}) = T_{\varepsilon} + N_{\varepsilon} = 2\varepsilon \cdot n_{\varepsilon} + f^{n_{\varepsilon}}(x_0) + 2\varepsilon$ (Tricot)
- critical index $\varepsilon \mapsto n_{\varepsilon}, \ \varepsilon \approx 0$, a step-function:

$$f^{n_{\varepsilon}}(x_0) - f^{n_{\varepsilon}+1}(x_0) \le 2\varepsilon, \quad f^{n_{\varepsilon}-1}(x_0) - f^{n_{\varepsilon}}(x_0) > 2\varepsilon.$$

 \Rightarrow [R2013,14] non-existence of the full power-log asymptotic expansion

 \Rightarrow appearance of oscillatory coefficients in the expansion (G($\tau_{\varepsilon})$, [MRR22])

Continuous time length of ε -neighborhoods of orbits

 embedding of a germ in a flow as time-1 map ↔ existence of the Fatou coordinate

$$\Psi \circ f - \Psi = 1, \ f^t := \Psi^{-1}(t + \Psi)$$

- $f_{\tau_{\varepsilon}}$ such that $f^{\tau_{\varepsilon}}(x_0) f^{\tau_{\varepsilon}+1}(x_0) = 2\varepsilon$
- the continuous-time length

$$\ell^{c}(\mathcal{O}^{f}(x_{0})_{\varepsilon}) = 2\varepsilon \cdot \tau_{\varepsilon} + f^{\tau_{\varepsilon}}(x_{0}) + 2\varepsilon$$

• $n_{\varepsilon} = \lfloor \tau_{\varepsilon} \rfloor \Rightarrow \ell^{c}(\mathcal{O}^{f}(x_{0})_{\varepsilon})$ coincides with $\ell(\mathcal{O}^{f}(x_{0})_{\varepsilon})$ in finitely many first terms, but has a full expansion without oscillations

Saddle-node unfoldings

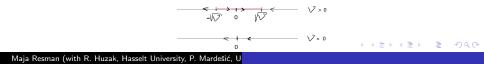
* generic 1-parameter unfoldings of a non-hyperbolic singular point

$$\frac{dx}{dt} = F(x,\nu), \nu \ge 0, \tag{1}$$

- F real analytic,
- singular point x = 0 at the bifurcation value $\nu = 0$ non-hyperbolic (F(0,0) = 0, $F_x(0,0) = 0$), generic assumptions:

$$F_{\nu}(0,0) \neq 0, \ F_{xx}(0,0) \neq 0.$$
 (2)

 \Rightarrow parabolic point at x=0 bifurcates at $\nu=0$ into two hyperbolic points: one attracting and one repelling, for $\nu>0$



$$\frac{dx}{dt} = F_{mod}(x,\nu), \ F_{mod}(x,\nu) := \frac{-x^2 + \nu}{1 + \rho(\nu)x}, \ \nu \in [0,\delta).$$
(3)

- 2 weak formal invariants:
 - \bullet the value $\rho(0)$ is the parabolic residual formal invariant
 - the multiplicity k = 2.

Weak formal equivalence [MardRoussRouss] – a formal change of variables

$$\hat{\Phi}(x,\nu) = (\hat{\varphi}_{\nu}(x), h(\nu)), \tag{4}$$

h an analytic diffeomorphism such that h(0)=0 , $\hat{\varphi}_\nu\in\mathbb{R}[[x]]$, $\nu\in[0,\delta),$ formal diffeo up to translation.

For simplicity, formal model (conclusions transported to non-model cases by formal conjugacy)

Formulation of the problem

- uniform initial point: $x_0 > 0$ small s.t. in attracting basin of 0 and of $\sqrt{\nu} > 0$, for small enough ν
- discontinuity in box dimension of orbits at the moment of bifurcation ν = 0: hyperbolic 0 to parabolic 1 - ¹/_{k+1}
- $\ell^{c}(\mathcal{O}^{f_{\nu}}(x_{0})_{\varepsilon}) \to \ell^{c}(\mathcal{O}^{f_{0}}(x_{0})_{\varepsilon})$, for every $\varepsilon \approx 0$, as $\nu \to 0$
- but: asymptotic terms in arepsilon behave discontinuously, as u
 ightarrow 0

 \Rightarrow Goal: find a Chebyshev scale so that the expansion, as $\varepsilon\to 0,$ is uniform for all parameters $\nu\geq 0$

 \Rightarrow expansion in the so-called *Ecalle-Roussarie type compensators* – functions of ν , ε [Rouss98]

The uniform Fatou coordinate

By simple integration of (3):

$$\Psi_{\nu}(x) = \alpha(x - \sqrt{\nu}, 2\sqrt{\nu}) + \frac{\rho(\nu)}{2}\log(x^2 - \nu), \ \nu \ge 0,$$

 \Rightarrow Expansion:

$$\Psi_{\nu}(x) \sim_{x \to \sqrt{\nu}} \begin{cases} \frac{1}{x}, & \nu = 0, \\ \left(\frac{\rho(\nu)}{2} - \frac{1}{2\sqrt{\nu}}\right) \log(x - \sqrt{\nu}), & \nu \neq 0. \end{cases}$$

The inverse Ecalle-Roussarie compensator

• ν and x small. The Écalle-Roussarie compensator [Rouss98]:

$$\omega(x,\nu) := \frac{x^{-\nu} - 1}{\nu}$$

• pointwise, $\omega(x,\nu) \rightarrow -\log x$, as $\nu \rightarrow 0$

• convergence uniform in x, if we multiply by x^{δ} , $\delta > 0$.

Definition (The inverse compensator, [HMRZ23)

] For
$$x > 0$$
 and $\nu \in [0, \delta)$,

$$\alpha(x,\nu) := \frac{1}{\nu} \log\left(1 + \frac{\nu}{x}\right).$$

the inverse compensator.

The inverse Ecalle-Roussarie compensator

The name:

$$\alpha(x,\nu) = -\log \circ \omega^{-1}\left(\frac{1}{x},\nu\right),$$

 ω^{-1} the inverse of ω wrt variable x;

- $\alpha(x,\nu) \to \frac{1}{x}$, pointwise as $\nu \to 0$;
- $x^{1+\delta}\alpha(x,\nu) \to x^{\delta}$, as $\nu \to 0$, uniformly in x > 0;
- The asymptotic behavior, as $x \to 0$:

$$\alpha(x,\nu) = \begin{cases} \frac{1}{x}, & \nu = 0, \\ \frac{1}{\nu}(-\log x) + \frac{\log \nu}{\nu} + \mathbb{R}_{\nu}[[x]], & \nu \neq 0. \end{cases}$$
(5)

The inverse displacement function g_{ν}^{-1}

Displacement function $g_{\nu} := \mathrm{id} - f_{\nu} \in \mathrm{Diff}(\mathbb{R}, 0)$:

$$g_{\nu}(x) = \left(1 - e^{-\frac{2\sqrt{\nu}}{1 - \rho(\nu)\sqrt{\nu}}}\right) \cdot (x - \sqrt{\nu}) + \\ + e^{-\frac{2\sqrt{\nu}}{1 - \rho(\nu)\sqrt{\nu}}} \cdot a\left(\frac{2\sqrt{\nu}}{1 - \rho(\nu)\sqrt{\nu}}\right) \cdot \frac{1 + \rho(\nu)\sqrt{\nu}}{(1 - \rho(\nu)\sqrt{\nu})^2} \cdot (x - \sqrt{\nu})^2 + \\ + (x - \sqrt{\nu})^3 \cdot \mathbb{R}_{\nu}\{(x - \sqrt{\nu})\}, \quad \nu \in [0, \delta), \ x \to \sqrt{\nu}.$$
(6)

(linear for $\nu > 0$, quadratic for $\nu = 0$)

Definition (The square root compensator, HMR23)

 ν , x > 0 small,

$$\tilde{\eta}(x,\nu) := \sqrt{x+\nu} - \sqrt{\nu},$$

the square root-type compensator.

• asymptotic expansion:

$$\tilde{\eta}(x,\nu) = \begin{cases} \sqrt{x}, & \nu = 0, \\ \frac{x}{\sqrt{\nu}} + \sqrt{\nu} \frac{x^2}{\nu^2} \mathbb{R}\{\frac{x}{\nu}\}, & \nu > 0, \ x \to 0. \end{cases}$$
(7)

- $\tilde{\eta}$ small, for small x,
- $\tilde{\eta}(x,\nu) \to \sqrt{x}$ uniformly in x, as $\nu \to 0+$.

The uniform Chebyshev expansion in ε , $\nu \ge 0$

٩

$$\ell^{c}(T_{\varepsilon,\nu}) = \left(\Psi_{\nu}((g_{\nu})^{-1}(2\varepsilon)) - \Psi_{\nu}(x_{0})\right) \cdot 2\varepsilon,$$

- g_{ν} quadratic for $\nu = 0$, linear for $\nu > 0 \Rightarrow g_{\nu}^{-1}(\varepsilon)$ contains a square-root type compensator
- bad: composition of two compensators
- \Rightarrow change the variable from ε to

$$\eta := \theta_{-\sqrt{\nu}} \circ g_{\nu}^{-1}(2\varepsilon)$$

 \Rightarrow variable η contains the parameter, same as E-R compensator variable $x\omega$ [Rouss98]

Theorem 1

In compensator variable $\eta \geq 0$, the continuous tail $\ell^c(T_{\varepsilon,\nu})$ admits an asymptotic expansion, uniform in parameter $\nu \in [0, \delta)$, in the following Chebyshev scale:

$$\left\{ I(\nu,\eta)\eta, \ I(\nu,\eta)\eta^2, \ I(\nu,\eta)\eta^3, \ldots \right\},$$

as $\eta \rightarrow 0$, where

$$I(\nu,\eta) := \alpha(\eta, 2\sqrt{\nu}) + \frac{\rho(\nu)}{2} \log\left(\eta^2 + 2\sqrt{\nu} \cdot \eta\right) - \Psi_{\nu}(x_0), \quad (8)$$

non-zero in the uniform neighborhood $\eta \in [0, d)$ for $\nu \in [0, \delta)$.

The uniform Chebyshev expansion in ε , $\nu \ge 0$; reading the codimension of bifurcation

Theorem 2

More precisely,

$$\ell(T_{\varepsilon,\nu}^{c}) = I(\nu,\eta)g_{\nu}(\eta + \sqrt{\nu}) \\ \sim \left(1 - e^{-\frac{2\sqrt{\nu}}{1 - \rho(\nu)\sqrt{\nu}}}\right) \cdot I(\nu,\eta)\eta +$$
(9)
+ $e^{-\frac{2\sqrt{\nu}}{1 - \rho(\nu)\sqrt{\nu}}} a\left(\frac{2\sqrt{\nu}}{1 - \rho(\nu)\sqrt{\nu}}\right) \frac{1 + \rho(\nu)\sqrt{\nu}}{(1 - \rho(\nu)\sqrt{\nu})^{2}} \cdot I(\nu,\eta)\eta^{2} +$ (10)
+ $o_{\nu}(I(\nu,\eta)\eta^{2}), \ \eta \to 0 + .$

- at $\nu = 0$, the first non-zero coefficient is the third one.
- Rolle in Chebyshev scales: at most two zero points bifurcate in η → ℓ^c(T_{ε,ν}) from the zero point η = 0 at ν = 0 (codimension of bifurcation 2)

Expansion by *indecomposable* compensators $\alpha, \tilde{\eta}$

Relation of η to the simpler (indecomposable) compensator $\tilde{\eta}$:

$$\eta(2\varepsilon,\nu) = \chi_{\nu}\Big(\tilde{\eta}\Big(\frac{2\varepsilon}{C(0)},r(\nu)\Big)\Big), \ \nu \in [0,\delta),$$

$$\begin{split} r(\nu) &:= \frac{1 - e^{-\frac{2\sqrt{\nu}}{1 - \rho(\nu)\sqrt{\nu}}}}{2C(0)}, \\ \chi_{\nu} \text{ is a germ of a diffeo tangent to id.} \end{split}$$

• Another compensator variable:

d

$$\kappa(x,\nu) := \frac{1}{x+\nu}.$$
(11)

$$\frac{d}{dx}\alpha(x,\nu) = -\frac{1}{x}\kappa(x,\nu).$$
• $\kappa(x,\nu) \to \frac{1}{x}$ by points, as $\nu \to 0$
• $x^{\delta}\kappa(x,\nu) \to x^{-1+\delta}$ uniformly as $\nu \to 0$, $\delta > 0$.

1

Maja Resman (with R. Huzak, Hasselt University, P. Mardešić, U

۲

Re-arrangement of the terms in the expansion:

1. the terms that give the same power-logarithmic asymptotic term in $\tilde{\eta}$ for $\nu = 0$ grouped together as a block inside square brackets; 2. $\nu > 0$: each block possibly *infinite* – can be further expanded asymptotically in a convergent power-logarithmic series in $\tilde{\eta}$, as $\tilde{\eta} \rightarrow 0$.

Expansion by *indecomposable* compensators α , $\tilde{\eta}$

$$\begin{split} \ell^{c}(T_{\varepsilon,\nu}) &\sim \left(1 - e^{-\frac{2\sqrt{h(\nu)}}{1 - \rho(h(\nu))\sqrt{h(\nu)}}}\right) \cdot \left\{ \left[\alpha(C(\nu)\tilde{\eta}, 2\sqrt{h(\nu)}) \cdot \tilde{\eta}\right] + \\ &+ \frac{\rho(h(\nu))}{2} \sum_{k=0}^{\infty} a_{k}(\nu) \left[\log \tilde{\eta} \cdot \tilde{\eta}^{k+1} + \log\left(\tilde{\eta} + \frac{2\sqrt{h(\nu)}}{C(\nu)}\right) \cdot \tilde{\eta}^{k+1}\right] + \\ &+ \sum_{k=1}^{\infty} \left[a_{k}(\nu) \cdot \alpha\left(C(\nu)\tilde{\eta}, 2\sqrt{h(\nu)}\right) \cdot \tilde{\eta}^{k+1} + N_{k}^{\nu}\left(\tilde{\eta}, \kappa\left(C(\nu)\tilde{\eta}, 2\sqrt{h(\nu)}\right)\right)\right] \right\} + \\ &+ c_{2}(\nu) \cdot \left\{ \left[\alpha(C(\nu)\tilde{\eta}, 2\sqrt{h(\nu)}) \cdot \tilde{\eta}^{2}\right] + \\ &+ \frac{\rho(h(\nu))}{2} \sum_{k=0}^{\infty} b_{k}(\nu) \left[\log \tilde{\eta} \cdot \tilde{\eta}^{k+2} + \log\left(\tilde{\eta} + \frac{2\sqrt{h(\nu)}}{C(\nu)}\right) \cdot \tilde{\eta}^{k+2}\right] + \\ &+ \sum_{k=1}^{\infty} \left[b_{k}(\nu) \cdot \alpha\left(C(\nu)\tilde{\eta}, 2\sqrt{h(\nu)}\right) \cdot \tilde{\eta}^{k+2} + M_{k+1}^{\nu}\left(\tilde{\eta}, \kappa\left(C(\nu)\tilde{\eta}, 2\sqrt{h(\nu)}\right)\right)\right] \right\}, \\ c_{2}(0) \neq 0, \ N_{k}^{\nu}, \ M_{k}^{\nu} \ \text{homogenous polynomials of degree } k \ \text{whose coefficients depend on } \nu. \end{split}$$

Expansions in separate cases $\nu = 0$ and $\nu > 0$

•
$$\nu = 0$$
, $\tilde{\eta} = \sqrt{\frac{2\varepsilon}{C(0)}}$,

$$\begin{split} \ell^{c}(T_{\varepsilon,0}) &\sim \frac{c_{2}(0)}{C(0)} \tilde{\eta} + \rho(0) \sum_{k=0}^{\infty} b_{k}(0) \tilde{\eta}^{k+2} \log \tilde{\eta} + \sum_{k=1}^{\infty} c_{k} \tilde{\eta}^{k+2} \\ &= \frac{c_{2}(0)\sqrt{2}}{C(0)^{3/2}} \varepsilon^{\frac{1}{2}} + \rho(0) \sum_{k=0}^{\infty} c_{k} \varepsilon^{\frac{k+2}{2}} \log \varepsilon + \sum_{k=1}^{\infty} d_{k} \varepsilon^{\frac{k+2}{2}}, \ \varepsilon \to 0, \end{split}$$

æ

・四ト・モート・モート

•
$$\nu > 0$$
,
• $\tilde{\eta} = \frac{2\varepsilon}{C(0)\sqrt{r(h(\nu))}} + o(\varepsilon) \in \mathbb{R}_{\nu}\{\varepsilon\}.$
• $\alpha(C(\nu)\tilde{\eta}, 2\sqrt{h(\nu)}) \sim \log \varepsilon + \frac{1}{2\sqrt{h(\nu)}}\log \frac{C(0)\sqrt{r(h(\nu))h(\nu)}}{C(\nu)} + \varepsilon \mathbb{R}_{\nu}\{\varepsilon\}$

 $\log\left(\tilde{\eta} + \frac{2\sqrt{h(\nu)}}{C(\nu)}\right) \\ \sim \log\frac{2\sqrt{h(\nu)}}{C(\nu)} + \frac{C(\nu)}{C(0)\sqrt{r(h(\nu))h(\nu)}}\varepsilon + \varepsilon^2 \mathbb{R}_{\nu}\{\varepsilon\}$

$$\kappa(C(\nu)\tilde{\eta}, 2\sqrt{h(\nu)}) \sim \frac{1}{2\sqrt{h(\nu)}} - \frac{C(\nu)}{2C(0)h(\nu)\sqrt{r(h(\nu))}} \varepsilon + \varepsilon^2 \mathbb{R}_{\nu}\{\varepsilon\}, \ \varepsilon \to 0.$$

 \rightarrow monomials in the expansion are ε^k , $k \in \mathbb{N}_0$, and $\varepsilon^k \log \varepsilon$, $k \ge 1$.