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Let f(x) be a polynomial of degree n = 2¢ — 1, the Liénard

equation
x=y,
y = —X—- yf(X)7

has a center if and only if f is an odd polynomial.



LIENARD CENTER

Let f(x) be a polynomial of degree n = 2¢ — 1, the Liénard

equation
x=y,
y = —X—- yf(X)7

has a center if and only if f is an odd polynomial.
Writing F(x) = [o f(s)ds and replacing y by y — F(x),

{X=y—FU%

Yy = —Xx.

Where F(x) is an even polynomial of degree n+ 1 = 2/ with
F(0) = 0.
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THEOREM

For each choice of an odd integer n, there exists a polynomial F of
degree n+ 1 = 2/ so that the Liénard system has at least

n— 1 =2¢ — 2 critical periods.
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THEOREM

For each choice of an odd integer n, there exists a polynomial F of
degree n+ 1 = 2/ so that the Liénard system has at least

n— 1 =2¢ — 2 critical periods.

CONJECTURE

For any odd n an upperbound for the number of critical periods
that a classical Liénard system of degree n+ 1 can have is given by
n—1.



COMPACTIFICATION

Any Liénard system of degree exactly 2/ is linearly equivalent to

some
X = y — <X2Z + Zk 1 a2kX2k>
Sea: _
y = —€x
or to some
X=y —(26—{—2 )\QkX )
Ly :
y = —X.
a=(az,a4,...,a0 2) €S2 €€ 0, e,

A= ()‘2;)\47 .- '7>\2€—2) € B(O’ K)

[d F. Dumortier. Compactification and desingularization of spaces
of polynomial Liénard equations. J. Differential Equations 224
(2006) 296-313.



COMPACTIFICATION

SLOW-FAST LIENARD SYSTEM

x=y- (X% + 3 aszZk) ;
So.a: 9
y=0.
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Periodic orbits in slow-fast Liénard S, , are perturbations of
slow-fast limit periodic sets.
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SLOW-FAST LIENARD SYSTEM

iﬁ{kzy—ﬂﬂ,

’ y = —e€x.
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COMPACTIFICATION

SLOW-FAST LIENARD SYSTEM

iﬁ{kzy—ﬂﬂ,

’ y = —e€x.

_ L _ ! VI X _ _—X /I —Xx
y=F(x)=y=F(x)x= X= 5= Fog =X = Flo

Periodic orbits in slow-fast Liénard S, , are perturbations of
slow-fast limit periodic sets.
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[ P. De Maesschalck, F. Dumortier. The period function of
classical Liénard equations. J. Differential Equations 233
(2007) 380-403.

THEOREM

For each choice of an odd integer n, there exists a polynomial F of
degree n+ 1 = 2/ so that the Liénard system has at least
n—1=2¢— 2 critical periods.

IDEA

For € ~ 0 the period function increase if longer distance is travelled
near the critical curve y = F(x).

They choose F(x) to be the Legendre polynomial of degree 2/,

2/
F0 = gy g (0° = D).

has 2¢ — 1 critical points with increasing critical levels.
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PERIOD FUNCTION AT TURNING POINTS

CONJECTURE

For any odd n an upperbound for the number of critical periods
that a classical Liénard system of degree n+ 1 can have is given by
n—1.

OUR CONTRIBUTION
Study the period function of planar generic and non-generic
turning points (the origin for slow-fast Liénard systems).
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We consider slow-fast polynomial Liénard equations of center type
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. . X=y— (X2n + Zi:l akx2n+2k)’
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THE THEOREM

Let £,m>1and n=1 (resp. n > 1) be fixed. For any compact
K C R“™ there exist ¢g > 0 and yp > 0 small enough such that
the period function T(y;e€) of the center of X, at the origin is

strinctly monotonous increasing (resp. has a global minimum) in
the interval |0, yo] for all € €]0, ¢o] and n € K.
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We consider slow-fast polynomial Liénard equations of center type

. . X=y— (X2n + Zi:l akx2n+2k)’
€ - y — 62"(—X2n_1 4 ZZ):I ka2n+2k—1)‘

THE THEOREM

Let £,m>1and n=1 (resp. n > 1) be fixed. For any compact
K C R“™ there exist ¢g > 0 and yp > 0 small enough such that
the period function T(y;e€) of the center of X, at the origin is

strinctly monotonous increasing (resp. has a global minimum) in
the interval |0, yo] for all € €]0, ¢o] and n € K.

COROLLARY
When n =1 (generic case) and by = 0 we recover classic slow-fast

Liénard with F(x) = axx?+ -+, aa > 0.
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THE FAMILY BLOW-UP
Desingularize the system X, near (x,y,€) = (0,0,0).

ViR xS2 = R3:(r,(%,7,8) = (x,y,€) = (1%, r*"y, ré), € > 0.
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THE FAMILY BLOW-UP
Desingularize the system X, near (x,y,€) = (0,0,0).

ViR xS2 = R3:(r,(%,7,8) = (x,y,€) = (1%, r*"y, ré), € > 0.
The blown-up vector field is the pullback

_ 1, )
Xy i= V¥ (xw7 + an> :

To study the blown-up v.f. X, near the blow-up locus {0} x S2 we
use different charts with rectified coordinates.
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THE FAMILY BLOW-UP

In {€ =1} we have (x,y,€) = (rx,r*"y,r) and X, becomes
XF = 62n_1XF,

= =2 L 2k =2n+2k
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THE FAMILY BLOW-UP

In {€ =1} we have (x,y,€) = (rx, r?"y,r) and X., becomes
XF = 62n_1XF,
)_( . — )7 o ()—<2n + Zi:]- ak€2k)_(2n+2k)
F- j = —x2n14 S bye2k g2n+2k=1,

I

When € = 0,
{ = = =2n

with first integral H(x,y) = e 2" (y — x2" + 1/2n).
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THE FAMILY BLOW-UP

In {€ =1} we have (x,y,€) = (rx,r*"y,r) and X, becomes
XF = 62n_1XF,

= =2 L 2k =2n+2k

Xe - =7 = (X" 4 Yoy ake x2ek)
F- 3= —on_ — _
y = _X2n 1 + ZT:l bk62kX2n+2k l.

I

When € = 0,

with first integral H(x,y) = e 2" (y — x2" + 1/2n).

IDEA
We use classical tools for study the period function near the origin
(x,y) = (0,0) and on the period annulus.
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For € ~ 0 small,
Te(x,€) = To(X) + O(€)

where To(X) is the period function of
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THE FAMILY BLOW-UP: BIFURCATION AT THE ORIGIN

For € ~ 0 small,
Te(x,€) = To(X) + O(€)

where To(X) is the period function of

If n =1 the center is quadratic. Chicone and Jacobs:
To(X) = 27 + 222 + O(=)

If n> 1 a little more technical but To(X) — 400 and
4 To(X) — —oo as x — 0F,
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THE FAMILY BLOW-UP: BIFURCATION AT THE INTERIOR

The change of variables u = In(1 + 2n(y — X2")), v = X transforms
the system with € = 0 into the Hamiltonian with separate variables

0= —2nv>"1,
v = Vi(u)

with Vi(u) = 2= (e* —u—1).
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THE FAMILY BLOW-UP: BIFURCATION AT THE INTERIOR

The change of variables u = In(1 + 2n(y — X2")), v = X transforms
the system with € = 0 into the Hamiltonian with separate variables

0= —2nv>"L

v = V/(u)
with Vi(u) = 2= (e* —u—1).
If n =1 we use Schaaf criterion of monotonicity for potential
systems.
If n > 1 we use a criterion of strict convexity due to Sabatini for
Hamiltonians of the form H(u,v) = G(u) + F(v) with
G(u) = au?k + o(u?*) and F(v) = Bv? + o(v?).
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THE FAMILY BLOW-UP: BIFURCATION AT THE POLYCYCLE
In {7 = 1} we have (x,y,¢€) = (RX, R?", RE) and X, becomes
Xp = Rzn_IXD,

X =1— (X2 4+ 34, akR?kX?m2ky 1 LXE2G(X, R, n),
Xp 14 R=—2%RE?*G(X,R,n),
E = 2E2"1G(X,R,n),

with G(X, R,n) = X271 — S/ | b R2kX2+2k-1,

For R = E = 0 the system has semi-hyperbolic singularities at
X=-1(ps)and X =1 (p-).
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THE FAMILY BLOW-UP: BIFURCATION AT THE POLYCYCLE
(Rl, El) S 21, (RQ, E2) S 22, ()_<, 6) S 23.

T(R1, E1) = Tio(Ru, E1) + T2 3(Re, E2) + T3.4(X,€)

T1,2(R1, El) = /(Rl, El), | >0 C™®

2n—1
Rl

2n Es dE
To3(R>, Er) = 0b ded
23(R2, E2) (RE)2nT /152 E2n(E Ry E)’ k > 0 bounde

_ 1o
T3’4(X, 6) = 62,77_1I(X, 6), / COO



PERIOD FUNCTION AT TURNING POINTS

THE FAMILY BLOW-UP: BIFURCATION AT THE POLYCYCLE
(Rl, El) €34, (Rg, E2) € Yo, ()_(,6) € Y3,

T(R1,E1) = Tio(Ri, E1) + T23(Re, E2) + T34(X, €)

E2n 1

T1,2(R17 El) = W

I(Rl,El) | >0 C*®

2n £ dE
T>3(R>, Ep) = bounded
23(R2, B2) (R1E1)2”1/E E2+(E, Ry, E5)’ k > 0 bounde

1
T34(X, € , I Cc>®

/_
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THE FAMILY BLOW-UP: BIFURCATION AT THE POLYCYCLE

2n Es dE
T(Ri,El) = —=——5 —— + (R, E
( 17 1) (R]_E]_)2n <A E2/€(E, R27 E2) + ( 17 1)> 9

2

| bounded C®°.
We take the Lie derivative £

oT oT
LT =Ri— —E—
)
and we show, after computations, LT > 0 and tending to infinity
as e — 0.
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origin of X ,,. For each € > 0, ¢ = 0 we consider the intervals
10, €2"%], [€2"71, €2"¥2] and [€2"73, yo], where ¥, 71, yo > 0 are
small and independent of ¢, and j», 3 > 0 are large and
independent of e.
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GLUING TOGETHER
Let n > 1 and T(y;e€) the period function of the center at the
origin of X ,,. For each € > 0, ¢ = 0 we consider the intervals
10, €2"%], [€2"71, €2"¥2] and [€2"73, yo], where ¥, 71, yo > 0 are
small and independent of ¢, and j», 3 > 0 are large and
independent of €. For ¥, yo small and y3 large, it suffices to
decrease y; and increase y» to cover |0, yp].
> In ]0, €2"] we use the local result in {¢ = 1} and there are
no critical periods.
> In [€2"y1, €2"75] we use the global result in {¢ = 1} showing
that if n =1 the period is increasing and if n > 1 there is a
global minimum.

> In [€2"¥3, yo] we use the results in {y = 1} and there are no
critical periods.
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