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The period function

Critical periods
Isolated zeros of T ′(s).



Liénard center

Let f (x) be a polynomial of degree n = 2ℓ− 1, the Liénard
equation {

ẋ = y ,

ẏ = −x − yf (x),

has a center if and only if f is an odd polynomial.

Writing F (x) =
∫ x
0 f (s)ds and replacing y by y − F (x),{

ẋ = y − F (x),

ẏ = −x .

Where F (x) is an even polynomial of degree n + 1 = 2ℓ with
F (0) = 0.
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ẏ = −x .

Where F (x) is an even polynomial of degree n + 1 = 2ℓ with
F (0) = 0.



Liénard center

P. De Maesschalck, F. Dumortier. The period function of
classical Liénard equations. J. Differential Equations 233
(2007) 380–403.

Theorem
For each choice of an odd integer n, there exists a polynomial F of
degree n + 1 = 2ℓ so that the Liénard system has at least
n − 1 = 2ℓ− 2 critical periods.

Conjecture
For any odd n an upperbound for the number of critical periods
that a classical Liénard system of degree n+ 1 can have is given by
n − 1.
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Compactification

Any Liénard system of degree exactly 2ℓ is linearly equivalent to
some

Sϵ,a :

{
ẋ = y −

(
x2ℓ +

∑ℓ−1
k=1 a2kx

2k
)
,

ẏ = −ϵx ,

or to some

Lλ :

{
ẋ = y −

(
x2ℓ +

∑ℓ−1
k=1 λ2kx

2k
)
,

ẏ = −x .

a = (a2, a4, . . . , a2ℓ−2) ∈ Sℓ−2, ϵ ∈ [0, ϵ0],
λ = (λ2, λ4, . . . , λ2ℓ−2) ∈ B(0,K ).

F. Dumortier. Compactification and desingularization of spaces
of polynomial Liénard equations. J. Differential Equations 224
(2006) 296–313.



Compactification

Slow-fast Liénard system

S0,a :

{
ẋ = y −

(
x2ℓ +

∑ℓ−1
k=1 a2kx

2k
)
,

ẏ = 0.



Compactification

Slow-fast Liénard system

Sϵ,a :

{
ẋ = y − F (x),

ẏ = −ϵx .

y = F (x) ⇒ ẏ = F ′(x)ẋ = −ϵx ⇒ ẋ
ϵ = −x

F ′(x) ⇒ x ′ = −x
F ′(x)

Periodic orbits in slow-fast Liénard Sϵ,a are perturbations of
slow-fast limit periodic sets.
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Time analysis in slow-fast Liénard systems

P. De Maesschalck, F. Dumortier. The period function of
classical Liénard equations. J. Differential Equations 233
(2007) 380–403.

Theorem
For each choice of an odd integer n, there exists a polynomial F of
degree n + 1 = 2ℓ so that the Liénard system has at least
n − 1 = 2ℓ− 2 critical periods.

Idea
For ϵ ≈ 0 the period function increase if longer distance is travelled
near the critical curve y = F (x).
They choose F (x) to be the Legendre polynomial of degree 2ℓ,

F (x) =
1

4ℓ(2ℓ)!

d2ℓ

dx2ℓ
((x2 − 1)2ℓ),

has 2ℓ− 1 critical points with increasing critical levels.
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Time analysis in slow-fast Liénard systems



Period function at turning points

Conjecture
For any odd n an upperbound for the number of critical periods
that a classical Liénard system of degree n+ 1 can have is given by
n − 1.

Our contribution
Study the period function of planar generic and non-generic
turning points (the origin for slow-fast Liénard systems).



Period function at turning points

We consider slow-fast polynomial Liénard equations of center type

Xϵ,η :

{
ẋ = y − (x2n +

∑ℓ
k=1 akx

2n+2k),

ẏ = ϵ2n(−x2n−1 +
∑m

k=1 bkx
2n+2k−1).

The Theorem
Let ℓ,m ≥ 1 and n = 1 (resp. n > 1) be fixed. For any compact
K ⊂ Rℓ+m there exist ϵ0 > 0 and y0 > 0 small enough such that
the period function T (y ; ϵ) of the center of Xϵ,η at the origin is
strinctly monotonous increasing (resp. has a global minimum) in
the interval ]0, y0] for all ϵ ∈]0, ϵ0] and η ∈ K .

Corollary
When n = 1 (generic case) and bk = 0 we recover classic slow-fast
Liénard with F (x) = a2x

2 + · · · , a2 > 0.
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Period function at turning points

The family blow-up
Desingularize the system Xϵ,η near (x , y , ϵ) = (0, 0, 0).

Ψ : R+×S2+ → R3 : (r , (x̄ , ȳ , ϵ̄)) 7→ (x , y , ϵ) = (r x̄ , r2nȳ , r ϵ̄), ϵ̄ ≥ 0.

The blown-up vector field is the pullback

X̄η :=
1

r2n − 1
Ψ∗

(
Xϵ,η + 0

∂

∂ϵ

)
.

To study the blown-up v.f. X̄η near the blow-up locus {0} × S2+ we
use different charts with rectified coordinates.
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The family blow-up

In {ϵ̄ = 1} we have (x , y , ϵ) = (r x̄ , r2nȳ , r) and Xϵ,η becomes
XF := ϵ2n−1X̄F ,

X̄F :

{
˙̄x = ȳ − (x̄2n +

∑ℓ
k=1 akϵ

2k x̄2n+2k)

˙̄y = −x̄2n−1 +
∑m

k=1 bkϵ
2k x̄2n+2k−1.

When ϵ = 0, {
˙̄x = ȳ − x̄2n

˙̄y = −x̄2n−1,

with first integral H(x̄ , ȳ) = e−2nȳ (ȳ − x̄2n + 1/2n).

Idea
We use classical tools for study the period function near the origin
(x̄ , ȳ) = (0, 0) and on the period annulus.
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˙̄x = ȳ − x̄2n

˙̄y = −x̄2n−1,

with first integral H(x̄ , ȳ) = e−2nȳ (ȳ − x̄2n + 1/2n).
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Period function at turning points

The family blow-up: bifurcation at the origin

For ϵ ≈ 0 small,
TF (x̄ , ϵ) = T0(x̄) + O(ϵ)

where T0(x̄) is the period function of{
˙̄x = ȳ − x̄2n

˙̄y = −x̄2n−1,

If n = 1 the center is quadratic. Chicone and Jacobs:

T0(x̄) = 2π +
π

3
x̄2 + O(x̄3)

If n > 1 a little more technical but T0(x̄) → +∞ and
d
dx̄T0(x̄) → −∞ as x̄ → 0+.
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Period function at turning points

The family blow-up: bifurcation at the interior

The change of variables u = ln(1 + 2n(ȳ − x̄2n)), v = x̄ transforms
the system with ϵ = 0 into the Hamiltonian with separate variables{

u̇ = −2nv2n−1,

v̇ = V ′
n(u)

with Vn(u) =
1
2n (e

u − u − 1).

If n = 1 we use Schaaf criterion of monotonicity for potential
systems.
If n > 1 we use a criterion of strict convexity due to Sabatini for
Hamiltonians of the form H(u, v) = G (u) + F (v) with
G (u) = αu2k + o(u2k) and F (v) = βv2ℓ + o(v2ℓ).
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Period function at turning points

The family blow-up: bifurcation at the polycycle
In {ȳ = 1} we have (x , y , ϵ) = (RX ,R2n,RE ) and Xϵ,η becomes
XD := R2n−1X̄D ,

X̄D :


Ẋ = 1− (X 2n +

∑ℓ
k=1 akR

2kX 2n+2k) + 1
2nXE

2nG (X ,R, η),

Ṙ = − 1
2nRE

2nG (X ,R, η),

Ė = 1
2nE

2n+1G (X ,R, η),

with G (X ,R, η) = X 2n−1 −
∑m

k=1 bkR
2kX 2n+2k−1.

For R = E = 0 the system has semi-hyperbolic singularities at
X = −1 (p+) and X = 1 (p−).
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Period function at turning points

The family blow-up: bifurcation at the polycycle
(R1,E1) ∈ Σ1, (R2,E2) ∈ Σ2, (x̄ , ϵ) ∈ Σ3.

T (R1,E1) = T1,2(R1,E1) + T2,3(R2,E2) + T3,4(x̄ , ϵ)

T1,2(R1,E1) =
1

R2n−1
1

I (R1,E1), I > 0 C∞

T2,3(R2,E2) =
2n

(R2E2)2n−1

∫ E3

E2

dE

E 2κ(E ,R2,E2)
, κ > 0 bounded

T3,4(x̄ , ϵ) =
1

ϵ2n−1
Ī (x̄ , ϵ), Ī C∞
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Period function at turning points

The family blow-up: bifurcation at the polycycle

T (R1,E1) =
2n

(R1E1)2n

(∫ E3

E2

dE

E 2κ(E ,R2,E2)
+ I (R1,E1)

)
,

I bounded C∞.
We take the Lie derivative L

LT := R1
∂T

∂R1
− E1

∂T

∂E1

and we show, after computations, LT > 0 and tending to infinity
as ϵ → 0.



Period function at turning points

Gluing together
Let n ≥ 1 and T (y ; ϵ) the period function of the center at the
origin of Xϵ,η. For each ϵ > 0, ϵ ≈ 0 we consider the intervals
]0, ϵ2nȳ0], [ϵ

2nȳ1, ϵ
2nȳ2] and [ϵ2nȳ3, y0], where ȳ0, ȳ1, y0 > 0 are

small and independent of ϵ, and ȳ2, ȳ3 > 0 are large and
independent of ϵ.

For ȳ0, y0 small and ȳ3 large, it suffices to
decrease ȳ1 and increase ȳ2 to cover ]0, y0].

▶ In ]0, ϵ2nȳ0] we use the local result in {ϵ̄ = 1} and there are
no critical periods.

▶ In [ϵ2nȳ1, ϵ
2nȳ2] we use the global result in {ϵ̄ = 1} showing

that if n = 1 the period is increasing and if n > 1 there is a
global minimum.

▶ In [ϵ2nȳ3, y0] we use the results in {ȳ = 1} and there are no
critical periods.
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▶ In ]0, ϵ2nȳ0] we use the local result in {ϵ̄ = 1} and there are
no critical periods.

▶ In [ϵ2nȳ1, ϵ
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small and independent of ϵ, and ȳ2, ȳ3 > 0 are large and
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2nȳ2] we use the global result in {ϵ̄ = 1} showing

that if n = 1 the period is increasing and if n > 1 there is a
global minimum.
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small and independent of ϵ, and ȳ2, ȳ3 > 0 are large and
independent of ϵ. For ȳ0, y0 small and ȳ3 large, it suffices to
decrease ȳ1 and increase ȳ2 to cover ]0, y0].

▶ In ]0, ϵ2nȳ0] we use the local result in {ϵ̄ = 1} and there are
no critical periods.

▶ In [ϵ2nȳ1, ϵ
2nȳ2] we use the global result in {ϵ̄ = 1} showing

that if n = 1 the period is increasing and if n > 1 there is a
global minimum.

▶ In [ϵ2nȳ3, y0] we use the results in {ȳ = 1} and there are no
critical periods.
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Many thanks for your attention
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