Period function of planar turning points

DAVID ROJAS

Universitat de Girona, Catalonia, Spain

Bifurcations of Dynamical Systems and Numerics Zagreb, May 10th Joint work with Renato Huzak

This research has been partially supported by the AEI/MCI grant No. MTM2017-86795-C3-1-P and the Serra Húnter Program.

The period function

CRITICAL PERIODS lsolated zeros of T'(s).

Let f(x) be a polynomial of degree $n = 2\ell - 1$, the Liénard equation

$$\begin{cases} \dot{x} = y, \\ \dot{y} = -x - yf(x), \end{cases}$$

has a center if and only if f is an odd polynomial.

Let f(x) be a polynomial of degree $n = 2\ell - 1$, the Liénard equation

$$\begin{cases} \dot{x} = y, \\ \dot{y} = -x - yf(x), \end{cases}$$

has a center if and only if f is an odd polynomial.

Writing $F(x) = \int_0^x f(s) ds$ and replacing y by y - F(x), $\int \dot{x} = y - F(x)$,

$$\begin{cases} \dot{x} = \dot{y} & \dot{y} \\ \dot{y} = -x. \end{cases}$$

Where F(x) is an even polynomial of degree $n + 1 = 2\ell$ with F(0) = 0.

P. De Maesschalck, F. Dumortier. The period function of classical Liénard equations. J. Differential Equations 233 (2007) 380–403.

THEOREM

For each choice of an odd integer n, there exists a polynomial F of degree $n + 1 = 2\ell$ so that the Liénard system has at least $n - 1 = 2\ell - 2$ critical periods.

P. De Maesschalck, F. Dumortier. The period function of classical Liénard equations. J. Differential Equations 233 (2007) 380–403.

THEOREM

For each choice of an odd integer n, there exists a polynomial F of degree $n + 1 = 2\ell$ so that the Liénard system has at least $n - 1 = 2\ell - 2$ critical periods.

Conjecture

For any odd n an upperbound for the number of critical periods that a classical Liénard system of degree n + 1 can have is given by n - 1.

Any Liénard system of degree exactly 2ℓ is linearly equivalent to some

$$S_{\epsilon,a}:\begin{cases} \dot{x}=y-\left(x^{2\ell}+\sum_{k=1}^{\ell-1}a_{2k}x^{2k}\right),\\ \dot{y}=-\epsilon x,\end{cases}$$

or to some

$$L_{\lambda}: \begin{cases} \dot{x} = y - \left(x^{2\ell} + \sum_{k=1}^{\ell-1} \lambda_{2k} x^{2k}\right), \\ \dot{y} = -x. \end{cases}$$

$$m{a} = (m{a}_2, m{a}_4, \dots, m{a}_{2\ell-2}) \in \mathbb{S}^{\ell-2}, \ \epsilon \in [0, \epsilon_0], \ \lambda = (\lambda_2, \lambda_4, \dots, \lambda_{2\ell-2}) \in B(0, K).$$

F. Dumortier. Compactification and desingularization of spaces of polynomial Liénard equations. J. Differential Equations 224 (2006) 296–313.

Slow-fast Liénard system

$$S_{0,a}: \begin{cases} \dot{x} = y - \left(x^{2\ell} + \sum_{k=1}^{\ell-1} a_{2k} x^{2k}\right), \\ \dot{y} = 0. \end{cases}$$

SLOW-FAST LIÉNARD SYSTEM

P. De Maesschalck, F. Dumortier. The period function of classical Liénard equations. J. Differential Equations 233 (2007) 380–403.

Theorem

For each choice of an odd integer n, there exists a polynomial F of degree $n + 1 = 2\ell$ so that the Liénard system has at least $n - 1 = 2\ell - 2$ critical periods.

P. De Maesschalck, F. Dumortier. The period function of classical Liénard equations. J. Differential Equations 233 (2007) 380–403.

Theorem

For each choice of an odd integer n, there exists a polynomial F of degree $n + 1 = 2\ell$ so that the Liénard system has at least $n - 1 = 2\ell - 2$ critical periods.

IDEA

For $\epsilon \approx 0$ the period function increase if longer distance is travelled near the critical curve y = F(x).

They choose F(x) to be the Legendre polynomial of degree 2ℓ ,

$$F(x) = \frac{1}{4^{\ell}(2\ell)!} \frac{d^{2\ell}}{dx^{2\ell}} ((x^2 - 1)^{2\ell}),$$

has $2\ell - 1$ critical points with increasing critical levels.

Conjecture

For any odd n an upperbound for the number of critical periods that a classical Liénard system of degree n + 1 can have is given by n - 1.

OUR CONTRIBUTION

Study the period function of planar generic and non-generic turning points (the origin for slow-fast Liénard systems).

We consider slow-fast polynomial Liénard equations of center type

$$X_{\epsilon,\eta}:\begin{cases} \dot{x} = y - (x^{2n} + \sum_{k=1}^{\ell} a_k x^{2n+2k}), \\ \dot{y} = \epsilon^{2n} (-x^{2n-1} + \sum_{k=1}^{m} b_k x^{2n+2k-1}). \end{cases}$$

Period function at turning points

We consider slow-fast polynomial Liénard equations of center type

$$X_{\epsilon,\eta}:\begin{cases} \dot{x}=y-(x^{2n}+\sum_{k=1}^{\ell}a_{k}x^{2n+2k}),\\ \dot{y}=\epsilon^{2n}(-x^{2n-1}+\sum_{k=1}^{m}b_{k}x^{2n+2k-1}).\end{cases}$$

THE THEOREM

Let $\ell, m \ge 1$ and n = 1 (resp. n > 1) be fixed. For any compact $K \subset \mathbb{R}^{\ell+m}$ there exist $\epsilon_0 > 0$ and $y_0 > 0$ small enough such that the period function $T(y; \epsilon)$ of the center of $X_{\epsilon,\eta}$ at the origin is strinctly monotonous increasing (resp. has a global minimum) in the interval $]0, y_0]$ for all $\epsilon \in]0, \epsilon_0]$ and $\eta \in K$.

We consider slow-fast polynomial Liénard equations of center type

$$X_{\epsilon,\eta}:\begin{cases} \dot{x}=y-(x^{2n}+\sum_{k=1}^{\ell}a_{k}x^{2n+2k}),\\ \dot{y}=\epsilon^{2n}(-x^{2n-1}+\sum_{k=1}^{m}b_{k}x^{2n+2k-1}).\end{cases}$$

THE THEOREM

Let $\ell, m \ge 1$ and n = 1 (resp. n > 1) be fixed. For any compact $K \subset \mathbb{R}^{\ell+m}$ there exist $\epsilon_0 > 0$ and $y_0 > 0$ small enough such that the period function $T(y; \epsilon)$ of the center of $X_{\epsilon,\eta}$ at the origin is strinctly monotonous increasing (resp. has a global minimum) in the interval $]0, y_0]$ for all $\epsilon \in]0, \epsilon_0]$ and $\eta \in K$.

COROLLARY

When n = 1 (generic case) and $b_k = 0$ we recover classic slow-fast Liénard with $F(x) = a_2 x^2 + \cdots$, $a_2 > 0$.

THE FAMILY BLOW-UP

Desingularize the system $X_{\epsilon,\eta}$ near $(x, y, \epsilon) = (0, 0, 0)$.

 $\Psi: \mathbb{R}^+ \times \mathbb{S}^2_+ \to \mathbb{R}^3: (r, (\bar{x}, \bar{y}, \bar{\epsilon})) \mapsto (x, y, \epsilon) = (r\bar{x}, r^{2n}\bar{y}, r\bar{\epsilon}), \bar{\epsilon} \ge 0.$

The family blow-up

Desingularize the system $X_{\epsilon,\eta}$ near $(x, y, \epsilon) = (0, 0, 0)$.

 $\Psi: \mathbb{R}^+ \times \mathbb{S}^2_+ \to \mathbb{R}^3: (r, (\bar{x}, \bar{y}, \bar{\epsilon})) \mapsto (x, y, \epsilon) = (r\bar{x}, r^{2n}\bar{y}, r\bar{\epsilon}), \bar{\epsilon} \ge 0.$

The blown-up vector field is the pullback

$$ar{X}_\eta := rac{1}{r^{2n}-1} \Psi^* \left(X_{\epsilon,\eta} + 0rac{\partial}{\partial \epsilon}
ight).$$

Period function at turning points

The family blow-up

Desingularize the system $X_{\epsilon,\eta}$ near $(x, y, \epsilon) = (0, 0, 0)$.

 $\Psi: \mathbb{R}^+ \times \mathbb{S}^2_+ \to \mathbb{R}^3: (r, (\bar{x}, \bar{y}, \bar{\epsilon})) \mapsto (x, y, \epsilon) = (r\bar{x}, r^{2n}\bar{y}, r\bar{\epsilon}), \bar{\epsilon} \ge 0.$

The blown-up vector field is the pullback

$$ar{X}_\eta := rac{1}{r^{2n}-1} \Psi^* \left(X_{\epsilon,\eta} + 0 rac{\partial}{\partial \epsilon}
ight).$$

To study the blown-up v.f. \bar{X}_{η} near the blow-up locus $\{0\} \times \mathbb{S}^2_+$ we use different charts with rectified coordinates.

THE FAMILY BLOW-UP

The family blow-up

THE FAMILY BLOW-UP

In $\{\bar{\epsilon} = 1\}$ we have $(x, y, \epsilon) = (r\bar{x}, r^{2n}\bar{y}, r)$ and $X_{\epsilon,\eta}$ becomes $X_F := \epsilon^{2n-1}\bar{X}_F$,

$$\bar{X}_{F}:\begin{cases} \dot{\bar{x}}=\bar{y}-(\bar{x}^{2n}+\sum_{k=1}^{\ell}a_{k}\epsilon^{2k}\bar{x}^{2n+2k})\\ \dot{\bar{y}}=-\bar{x}^{2n-1}+\sum_{k=1}^{m}b_{k}\epsilon^{2k}\bar{x}^{2n+2k-1}.\end{cases}$$

THE FAMILY BLOW-UP

In $\{\bar{\epsilon} = 1\}$ we have $(x, y, \epsilon) = (r\bar{x}, r^{2n}\bar{y}, r)$ and $X_{\epsilon,\eta}$ becomes $X_F := \epsilon^{2n-1}\bar{X}_F$,

$$\bar{X}_{F}:\begin{cases} \dot{\bar{x}}=\bar{y}-(\bar{x}^{2n}+\sum_{k=1}^{\ell}a_{k}\epsilon^{2k}\bar{x}^{2n+2k})\\ \dot{\bar{y}}=-\bar{x}^{2n-1}+\sum_{k=1}^{m}b_{k}\epsilon^{2k}\bar{x}^{2n+2k-1}.\end{cases}$$

When $\epsilon = 0$, $\begin{cases} \dot{\bar{x}} = \bar{y} - \bar{x}^{2n} \\ \dot{\bar{y}} = -\bar{x}^{2n-1}, \end{cases}$

with first integral $H(\bar{x},\bar{y}) = e^{-2n\bar{y}}(\bar{y}-\bar{x}^{2n}+1/2n).$

THE FAMILY BLOW-UP

In $\{\bar{\epsilon} = 1\}$ we have $(x, y, \epsilon) = (r\bar{x}, r^{2n}\bar{y}, r)$ and $X_{\epsilon,\eta}$ becomes $X_F := \epsilon^{2n-1}\bar{X}_F$,

$$\bar{X}_{F}:\begin{cases} \dot{\bar{x}} = \bar{y} - (\bar{x}^{2n} + \sum_{k=1}^{\ell} a_{k} \epsilon^{2k} \bar{x}^{2n+2k}) \\ \dot{\bar{y}} = -\bar{x}^{2n-1} + \sum_{k=1}^{m} b_{k} \epsilon^{2k} \bar{x}^{2n+2k-1} \end{cases}$$

When $\epsilon = 0$,

$$\begin{cases} \dot{\bar{x}} = \bar{y} - \bar{x}^{2n} \\ \dot{\bar{y}} = -\bar{x}^{2n-1}, \end{cases}$$

with first integral $H(\bar{x}, \bar{y}) = e^{-2n\bar{y}}(\bar{y} - \bar{x}^{2n} + 1/2n).$

IDEA

We use classical tools for study the period function near the origin $(\bar{x}, \bar{y}) = (0, 0)$ and on the period annulus.

The family blow-up: bifurcation at the origin

For $\epsilon \approx 0$ small,

$$T_F(\bar{x},\epsilon) = T_0(\bar{x}) + O(\epsilon)$$

where $T_0(\bar{x})$ is the period function of

$$\begin{cases} \dot{\bar{x}} = \bar{y} - \bar{x}^{2n} \\ \dot{\bar{y}} = -\bar{x}^{2n-1}, \end{cases}$$

If n = 1 the center is quadratic. Chicone and Jacobs:

$$T_0(\bar{x}) = 2\pi + \frac{\pi}{3}\bar{x}^2 + O(\bar{x}^3)$$

THE FAMILY BLOW-UP: BIFURCATION AT THE ORIGIN

For $\epsilon \approx 0$ small,

$$T_F(\bar{x},\epsilon) = T_0(\bar{x}) + O(\epsilon)$$

where $T_0(\bar{x})$ is the period function of

$$\begin{cases} \dot{\bar{x}} = \bar{y} - \bar{x}^{2n} \\ \dot{\bar{y}} = -\bar{x}^{2n-1}, \end{cases}$$

If n = 1 the center is quadratic. Chicone and Jacobs:

$$T_0(\bar{x}) = 2\pi + \frac{\pi}{3}\bar{x}^2 + O(\bar{x}^3)$$

If n > 1 a little more technical but $T_0(\bar{x}) \to +\infty$ and $\frac{d}{d\bar{x}}T_0(\bar{x}) \to -\infty$ as $\bar{x} \to 0^+$.

THE FAMILY BLOW-UP: BIFURCATION AT THE INTERIOR

The change of variables $u = \ln(1 + 2n(\bar{y} - \bar{x}^{2n}))$, $v = \bar{x}$ transforms the system with $\epsilon = 0$ into the Hamiltonian with separate variables

$$\begin{cases} \dot{u} = -2nv^{2n-1}, \\ \dot{v} = V'_n(u) \end{cases}$$

with $V_n(u) = \frac{1}{2n}(e^u - u - 1)$.

The family blow-up: bifurcation at the interior

The change of variables $u = \ln(1 + 2n(\bar{y} - \bar{x}^{2n}))$, $v = \bar{x}$ transforms the system with $\epsilon = 0$ into the Hamiltonian with separate variables

$$\begin{cases} \dot{u} = -2nv^{2n-1} \\ \dot{v} = V'_n(u) \end{cases}$$

with $V_n(u) = \frac{1}{2n}(e^u - u - 1)$. If n = 1 we use Schaaf criterion of monotonicity for potential systems.

The family blow-up: bifurcation at the interior

The change of variables $u = \ln(1 + 2n(\bar{y} - \bar{x}^{2n}))$, $v = \bar{x}$ transforms the system with $\epsilon = 0$ into the Hamiltonian with separate variables

$$\begin{cases} \dot{u} = -2nv^{2n-1} \\ \dot{v} = V'_n(u) \end{cases}$$

with $V_n(u) = \frac{1}{2n}(e^u - u - 1)$. If n = 1 we use Schaaf criterion of monotonicity for potential systems.

If n > 1 we use a criterion of strict convexity due to Sabatini for Hamiltonians of the form H(u, v) = G(u) + F(v) with $G(u) = \alpha u^{2k} + o(u^{2k})$ and $F(v) = \beta v^{2\ell} + o(v^{2\ell})$.

THE FAMILY BLOW-UP: BIFURCATION AT THE POLYCYCLE In $\{\bar{y} = 1\}$ we have $(x, y, \epsilon) = (RX, R^{2n}, RE)$ and $X_{\epsilon,\eta}$ becomes $X_D := R^{2n-1}\bar{X}_D$,

$$\bar{X}_{D}:\begin{cases} \dot{X} = 1 - (X^{2n} + \sum_{k=1}^{\ell} a_{k} R^{2k} X^{2n+2k}) + \frac{1}{2n} X E^{2n} G(X, R, \eta), \\ \dot{R} = -\frac{1}{2n} R E^{2n} G(X, R, \eta), \\ \dot{E} = \frac{1}{2n} E^{2n+1} G(X, R, \eta), \end{cases}$$

with
$$G(X, R, \eta) = X^{2n-1} - \sum_{k=1}^{m} b_k R^{2k} X^{2n+2k-1}$$
.

For R = E = 0 the system has semi-hyperbolic singularities at X = -1 (p_+) and X = 1 (p_-).

THE FAMILY BLOW-UP: BIFURCATION AT THE POLYCYCLE

THE FAMILY BLOW-UP: BIFURCATION AT THE POLYCYCLE $(R_1, E_1) \in \Sigma_1, (R_2, E_2) \in \Sigma_2, (\bar{x}, \epsilon) \in \Sigma_3.$ $T(R_1, E_1) = T_{1,2}(R_1, E_1) + T_{2,3}(R_2, E_2) + T_{3,4}(\bar{x}, \epsilon)$ $T_{1,2}(R_1, E_1) = \frac{1}{R_1^{2n-1}}I(R_1, E_1), \ I > 0 \ C^{\infty}$ $T_{2,3}(R_2, E_2) = \frac{2n}{(R_2 E_2)^{2n-1}} \int_{E}^{E_3} \frac{dE}{E^2 \kappa(E, R_2, E_2)}, \ \kappa > 0 \text{ bounded}$ $T_{3,4}(\bar{x},\epsilon) = \frac{1}{\epsilon^{2n-1}} \bar{I}(\bar{x},\epsilon), \ \bar{I} \ C^{\infty}$

THE FAMILY BLOW-UP: BIFURCATION AT THE POLYCYCLE $(R_1, E_1) \in \Sigma_1, (R_2, E_2) \in \Sigma_2, (\bar{x}, \epsilon) \in \Sigma_3.$ $T(R_1, E_1) = T_{1,2}(R_1, E_1) + T_{2,3}(R_2, E_2) + T_{3,4}(\bar{x}, \epsilon)$ $T_{1,2}(R_1, E_1) = \frac{E_1^{2n-1}}{(R_1, E_1)^{2n-1}} I(R_1, E_1), \ I > 0 \ C^{\infty}$ $T_{2,3}(R_2, E_2) = \frac{2n}{(R_1 E_1)^{2n-1}} \int_{E_2}^{E_3} \frac{dE}{E^2 \kappa(E, R_2, E_2)}, \ \kappa > 0 \text{ bounded}$ $T_{3,4}(\bar{x},\epsilon) = \frac{1}{(E_1R_1)^{2n-1}}\bar{I}(\bar{x},\epsilon), \ \bar{I} \ C^{\infty}$ $R_1 E_1 = R_2 E_2 = \epsilon$

The family blow-up: bifurcation at the polycycle

$$T(R_1, E_1) = \frac{2n}{(R_1 E_1)^{2n}} \left(\int_{E_2}^{E_3} \frac{dE}{E^2 \kappa(E, R_2, E_2)} + I(R_1, E_1) \right),$$

I bounded C^{∞} . We take the Lie derivative \mathcal{L}

$$\mathcal{L}T := R_1 \frac{\partial T}{\partial R_1} - E_1 \frac{\partial T}{\partial E_1}$$

and we show, after computations, $\mathcal{LT} > 0$ and tending to infinity as $\epsilon \to 0$.

Let $n \ge 1$ and $T(y; \epsilon)$ the period function of the center at the origin of $X_{\epsilon,\eta}$. For each $\epsilon > 0$, $\epsilon \approx 0$ we consider the intervals $]0, \epsilon^{2n}\bar{y}_0], [\epsilon^{2n}\bar{y}_1, \epsilon^{2n}\bar{y}_2]$ and $[\epsilon^{2n}\bar{y}_3, y_0]$, where $\bar{y}_0, \bar{y}_1, y_0 > 0$ are small and independent of ϵ , and $\bar{y}_2, \bar{y}_3 > 0$ are large and independent of ϵ .

Let $n \geq 1$ and $T(y; \epsilon)$ the period function of the center at the origin of $X_{\epsilon,\eta}$. For each $\epsilon > 0$, $\epsilon \approx 0$ we consider the intervals $]0, \epsilon^{2n}\bar{y}_0]$, $[\epsilon^{2n}\bar{y}_1, \epsilon^{2n}\bar{y}_2]$ and $[\epsilon^{2n}\bar{y}_3, y_0]$, where $\bar{y}_0, \bar{y}_1, y_0 > 0$ are small and independent of ϵ , and $\bar{y}_2, \bar{y}_3 > 0$ are large and independent of ϵ . For \bar{y}_0, y_0 small and \bar{y}_3 large, it suffices to decrease \bar{y}_1 and increase \bar{y}_2 to cover $]0, y_0]$.

Let $n \geq 1$ and $T(y; \epsilon)$ the period function of the center at the origin of $X_{\epsilon,\eta}$. For each $\epsilon > 0$, $\epsilon \approx 0$ we consider the intervals $]0, \epsilon^{2n}\bar{y}_0]$, $[\epsilon^{2n}\bar{y}_1, \epsilon^{2n}\bar{y}_2]$ and $[\epsilon^{2n}\bar{y}_3, y_0]$, where $\bar{y}_0, \bar{y}_1, y_0 > 0$ are small and independent of ϵ , and $\bar{y}_2, \bar{y}_3 > 0$ are large and independent of ϵ . For \bar{y}_0, y_0 small and \bar{y}_3 large, it suffices to decrease \bar{y}_1 and increase \bar{y}_2 to cover $]0, y_0]$.

In]0, e²ⁿy
₀] we use the local result in {ē = 1} and there are no critical periods.

Let $n \geq 1$ and $T(y; \epsilon)$ the period function of the center at the origin of $X_{\epsilon,\eta}$. For each $\epsilon > 0$, $\epsilon \approx 0$ we consider the intervals $]0, \epsilon^{2n}\bar{y}_0]$, $[\epsilon^{2n}\bar{y}_1, \epsilon^{2n}\bar{y}_2]$ and $[\epsilon^{2n}\bar{y}_3, y_0]$, where $\bar{y}_0, \bar{y}_1, y_0 > 0$ are small and independent of ϵ , and $\bar{y}_2, \bar{y}_3 > 0$ are large and independent of ϵ . For \bar{y}_0, y_0 small and \bar{y}_3 large, it suffices to decrease \bar{y}_1 and increase \bar{y}_2 to cover $]0, y_0]$.

- In]0, e²ⁿy
 ₀] we use the local result in {ē = 1} and there are no critical periods.
- In [e²ⁿy
 ₁, e²ⁿy
 ₂] we use the global result in {ē = 1} showing that if n = 1 the period is increasing and if n > 1 there is a global minimum.

Let $n \ge 1$ and $T(y; \epsilon)$ the period function of the center at the origin of $X_{\epsilon,\eta}$. For each $\epsilon > 0$, $\epsilon \approx 0$ we consider the intervals $]0, \epsilon^{2n}\bar{y}_0]$, $[\epsilon^{2n}\bar{y}_1, \epsilon^{2n}\bar{y}_2]$ and $[\epsilon^{2n}\bar{y}_3, y_0]$, where $\bar{y}_0, \bar{y}_1, y_0 > 0$ are small and independent of ϵ , and $\bar{y}_2, \bar{y}_3 > 0$ are large and independent of ϵ . For \bar{y}_0, y_0 small and \bar{y}_3 large, it suffices to decrease \bar{y}_1 and increase \bar{y}_2 to cover $]0, y_0]$.

- In]0, e²ⁿy
 ₀] we use the local result in {ē = 1} and there are no critical periods.
- In [e²ⁿy
 ₁, e²ⁿy
 ₂] we use the global result in {ē = 1} showing that if n = 1 the period is increasing and if n > 1 there is a global minimum.
- In [e²ⁿy₃, y₀] we use the results in {y = 1} and there are no critical periods.

Many thanks for your attention

References

- F. Dumortier. Compactification and desingularization of spaces of polynomial Liénard equations. J. Differential Equations 224 (2006) 296–313.
- P. De Maesschalck, F. Dumortier. The period function of classical Liénard equations. J. Differential Equations 233 (2007) 380–403.
- R. Huzak, D. Rojas. Period function of planar turning points. Elec. J. Qual. Theo. of Diff. Equ. 2021, No.16 1–21.