PERIOD FUNCTION OF PLANAR TURNING POINTS

David RoJAs

Universitat de Girona, Catalonia, Spain
Bifurcations of Dynamical Systems and Numerics
Zagreb, May 10th
Joint work with Renato Huzak

Universitat de Girona

This research has been partially supported by the $\mathrm{AEI} / \mathrm{MCI}$ grant No. MTM2017-86795-C3-1-P and the Serra Húnter Program.

The period function

Critical periods Isolated zeros of $T^{\prime}(s)$.

LiÉnard CEnter

Let $f(x)$ be a polynomial of degree $n=2 \ell-1$, the Liénard equation

$$
\left\{\begin{array}{l}
\dot{x}=y \\
\dot{y}=-x-y f(x)
\end{array}\right.
$$

has a center if and only if f is an odd polynomial.

Liénard center

Let $f(x)$ be a polynomial of degree $n=2 \ell-1$, the Liénard equation

$$
\left\{\begin{array}{l}
\dot{x}=y \\
\dot{y}=-x-y f(x)
\end{array}\right.
$$

has a center if and only if f is an odd polynomial.
Writing $F(x)=\int_{0}^{x} f(s) d s$ and replacing y by $y-F(x)$,

$$
\left\{\begin{array}{l}
\dot{x}=y-F(x) \\
\dot{y}=-x
\end{array}\right.
$$

Where $F(x)$ is an even polynomial of degree $n+1=2 \ell$ with $F(0)=0$.

LiÉnard CEnter

(P. De Maesschalck, F. Dumortier. The period function of classical Liénard equations. J. Differential Equations 233 (2007) 380-403.

Theorem
For each choice of an odd integer n, there exists a polynomial F of degree $n+1=2 \ell$ so that the Liénard system has at least $n-1=2 \ell-2$ critical periods.

LiÉnARD CENTER

囯 P. De Maesschalck, F. Dumortier. The period function of classical Liénard equations. J. Differential Equations 233 (2007) 380-403.

Theorem
For each choice of an odd integer n, there exists a polynomial F of degree $n+1=2 \ell$ so that the Liénard system has at least $n-1=2 \ell-2$ critical periods.

Conjecture
For any odd n an upperbound for the number of critical periods that a classical Liénard system of degree $n+1$ can have is given by $n-1$.

Compactification

Any Liénard system of degree exactly 2ℓ is linearly equivalent to some

$$
S_{\epsilon, a}:\left\{\begin{array}{l}
\dot{x}=y-\left(x^{2 \ell}+\sum_{k=1}^{\ell-1} a_{2 k} x^{2 k}\right) \\
\dot{y}=-\epsilon x
\end{array}\right.
$$

or to some

$$
L_{\lambda}:\left\{\begin{array}{l}
\dot{x}=y-\left(x^{2 \ell}+\sum_{k=1}^{\ell-1} \lambda_{2 k} x^{2 k}\right) \\
\dot{y}=-x
\end{array}\right.
$$

$a=\left(a_{2}, a_{4}, \ldots, a_{2 \ell-2}\right) \in \mathbb{S}^{\ell-2}, \epsilon \in\left[0, \epsilon_{0}\right]$,
$\lambda=\left(\lambda_{2}, \lambda_{4}, \ldots, \lambda_{2 \ell-2}\right) \in B(0, K)$.
䍰 F. Dumortier. Compactification and desingularization of spaces of polynomial Liénard equations. J. Differential Equations 224 (2006) 296-313.

Compactification

Slow-fast Liénard system

$$
S_{0, a}:\left\{\begin{array}{l}
\dot{x}=y-\left(x^{2 \ell}+\sum_{k=1}^{\ell-1} a_{2 k} x^{2 k}\right), \\
\dot{y}=0
\end{array}\right.
$$

Compactification

Slow-Fast Liénard system

$$
S_{\epsilon, a}:\left\{\begin{array}{l}
\dot{x}=y-F(x) \\
\dot{y}=-\epsilon x
\end{array}\right.
$$

$$
y=F(x) \Rightarrow \dot{y}=F^{\prime}(x) \dot{x}=-\epsilon x \Rightarrow \frac{\dot{x}}{\epsilon}=\frac{-x}{F^{\prime}(x)} \Rightarrow x^{\prime}=\frac{-x}{F^{\prime}(x)}
$$

Periodic orbits in slow-fast Liénard $S_{\epsilon, a}$ are perturbations of slow-fast limit periodic sets.

Compactification

Slow-Fast Liénard system

$$
S_{\epsilon, a}:\left\{\begin{array}{l}
\dot{x}=y-F(x) \\
\dot{y}=-\epsilon x
\end{array}\right.
$$

$$
y=F(x) \Rightarrow \dot{y}=F^{\prime}(x) \dot{x}=-\epsilon x \Rightarrow \frac{\dot{x}}{\epsilon}=\frac{-x}{F^{\prime}(x)} \Rightarrow x^{\prime}=\frac{-x}{F^{\prime}(x)}
$$

Periodic orbits in slow-fast Liénard $S_{\epsilon, a}$ are perturbations of slow-fast limit periodic sets.

Compactification

Slow-Fast Liénard system

$$
S_{\epsilon, a}:\left\{\begin{array}{l}
\dot{x}=y-F(x) \\
\dot{y}=-\epsilon x
\end{array}\right.
$$

$$
y=F(x) \Rightarrow \dot{y}=F^{\prime}(x) \dot{x}=-\epsilon x \Rightarrow \frac{\dot{x}}{\epsilon}=\frac{-x}{F^{\prime}(x)} \Rightarrow x^{\prime}=\frac{-x}{F^{\prime}(x)}
$$

Periodic orbits in slow-fast Liénard $S_{\epsilon, a}$ are perturbations of slow-fast limit periodic sets.

Compactification

Slow-Fast Liénard system

$$
S_{\epsilon, a}:\left\{\begin{array}{l}
\dot{x}=y-F(x) \\
\dot{y}=-\epsilon x
\end{array}\right.
$$

$$
y=F(x) \Rightarrow \dot{y}=F^{\prime}(x) \dot{x}=-\epsilon x \Rightarrow \frac{\dot{x}}{\epsilon}=\frac{-x}{F^{\prime}(x)} \Rightarrow x^{\prime}=\frac{-x}{F^{\prime}(x)}
$$

Periodic orbits in slow-fast Liénard $S_{\epsilon, a}$ are perturbations of slow-fast limit periodic sets.

Compactification

Slow-Fast Liénard system

$$
S_{\epsilon, a}:\left\{\begin{array}{l}
\dot{x}=y-F(x) \\
\dot{y}=-\epsilon x
\end{array}\right.
$$

$$
y=F(x) \Rightarrow \dot{y}=F^{\prime}(x) \dot{x}=-\epsilon x \Rightarrow \frac{\dot{x}}{\epsilon}=\frac{-x}{F^{\prime}(x)} \Rightarrow x^{\prime}=\frac{-x}{F^{\prime}(x)}
$$

Periodic orbits in slow-fast Liénard $S_{\epsilon, a}$ are perturbations of slow-fast limit periodic sets.

Time analysis in slow-Fast Liénard systems

图 P. De Maesschalck, F. Dumortier. The period function of classical Liénard equations. J. Differential Equations 233 (2007) 380-403.

Theorem
For each choice of an odd integer n, there exists a polynomial F of degree $n+1=2 \ell$ so that the Liénard system has at least $n-1=2 \ell-2$ critical periods.

Time analysis in slow-Fast Liénard Systems

嗇 P. De Maesschalck, F. Dumortier. The period function of classical Liénard equations. J. Differential Equations 233 (2007) 380-403.

Theorem

For each choice of an odd integer n, there exists a polynomial F of degree $n+1=2 \ell$ so that the Liénard system has at least $n-1=2 \ell-2$ critical periods.

IDEA

For $\epsilon \approx 0$ the period function increase if longer distance is travelled near the critical curve $y=F(x)$.
They choose $F(x)$ to be the Legendre polynomial of degree 2ℓ,

$$
F(x)=\frac{1}{4^{\ell}(2 \ell)!} \frac{d^{2 \ell}}{d x^{2 \ell}}\left(\left(x^{2}-1\right)^{2 \ell}\right)
$$

has $2 \ell-1$ critical points with increasing critical levels.

Time analysis in slow-fast Liénard systems

Period function at turning points

Conjecture

For any odd n an upperbound for the number of critical periods that a classical Liénard system of degree $n+1$ can have is given by $n-1$.

OUR CONTRIBUTION
Study the period function of planar generic and non-generic turning points (the origin for slow-fast Liénard systems).

Period function at turning points

We consider slow-fast polynomial Liénard equations of center type

$$
X_{\epsilon, \eta}:\left\{\begin{array}{l}
\dot{x}=y-\left(x^{2 n}+\sum_{k=1}^{\ell} a_{k} x^{2 n+2 k}\right), \\
\dot{y}=\epsilon^{2 n}\left(-x^{2 n-1}+\sum_{k=1}^{m} b_{k} x^{2 n+2 k-1}\right)
\end{array}\right.
$$

Period function at turning points

We consider slow-fast polynomial Liénard equations of center type

$$
X_{\epsilon, \eta}:\left\{\begin{array}{l}
\dot{x}=y-\left(x^{2 n}+\sum_{k=1}^{\ell} a_{k} x^{2 n+2 k}\right) \\
\dot{y}=\epsilon^{2 n}\left(-x^{2 n-1}+\sum_{k=1}^{m} b_{k} x^{2 n+2 k-1}\right)
\end{array}\right.
$$

The Theorem

Let $\ell, m \geq 1$ and $n=1$ (resp. $n>1$) be fixed. For any compact $K \subset \mathbb{R}^{\ell+m}$ there exist $\epsilon_{0}>0$ and $y_{0}>0$ small enough such that the period function $T(y ; \epsilon)$ of the center of $X_{\epsilon, \eta}$ at the origin is strinctly monotonous increasing (resp. has a global minimum) in the interval $] 0, y_{0}$] for all $\left.\epsilon \in\right] 0, \epsilon_{0}$] and $\eta \in K$.

Period function at turning points

We consider slow-fast polynomial Liénard equations of center type

$$
X_{\epsilon, \eta}:\left\{\begin{array}{l}
\dot{x}=y-\left(x^{2 n}+\sum_{k=1}^{\ell} a_{k} x^{2 n+2 k}\right), \\
\dot{y}=\epsilon^{2 n}\left(-x^{2 n-1}+\sum_{k=1}^{m} b_{k} x^{2 n+2 k-1}\right)
\end{array}\right.
$$

The Theorem

Let $\ell, m \geq 1$ and $n=1$ (resp. $n>1$) be fixed. For any compact $K \subset \mathbb{R}^{\ell+m}$ there exist $\epsilon_{0}>0$ and $y_{0}>0$ small enough such that the period function $T(y ; \epsilon)$ of the center of $X_{\epsilon, \eta}$ at the origin is strinctly monotonous increasing (resp. has a global minimum) in the interval $] 0, y_{0}$] for all $\left.\epsilon \in\right] 0, \epsilon_{0}$] and $\eta \in K$.

Corollary
When $n=1$ (generic case) and $b_{k}=0$ we recover classic slow-fast Liénard with $F(x)=a_{2} x^{2}+\cdots, a_{2}>0$.

Period function at turning points

The family Blow-up
Desingularize the system $X_{\epsilon, \eta}$ near $(x, y, \epsilon)=(0,0,0)$.

$$
\Psi: \mathbb{R}^{+} \times \mathbb{S}_{+}^{2} \rightarrow \mathbb{R}^{3}:(r,(\bar{x}, \bar{y}, \bar{\epsilon})) \mapsto(x, y, \epsilon)=\left(r \bar{x}, r^{2 n} \bar{y}, r \bar{\epsilon}\right), \bar{\epsilon} \geq 0
$$

Period function at turning points

The family Blow-up
Desingularize the system $X_{\epsilon, \eta}$ near $(x, y, \epsilon)=(0,0,0)$.

$$
\Psi: \mathbb{R}^{+} \times \mathbb{S}_{+}^{2} \rightarrow \mathbb{R}^{3}:(r,(\bar{x}, \bar{y}, \bar{\epsilon})) \mapsto(x, y, \epsilon)=\left(r \bar{x}, r^{2 n} \bar{y}, r \bar{\epsilon}\right), \bar{\epsilon} \geq 0
$$

The blown-up vector field is the pullback

$$
\bar{X}_{\eta}:=\frac{1}{r^{2 n}-1} \Psi^{*}\left(X_{\epsilon, \eta}+0 \frac{\partial}{\partial \epsilon}\right)
$$

Period function at turning points

The family Blow-up
Desingularize the system $X_{\epsilon, \eta}$ near $(x, y, \epsilon)=(0,0,0)$.

$$
\Psi: \mathbb{R}^{+} \times \mathbb{S}_{+}^{2} \rightarrow \mathbb{R}^{3}:(r,(\bar{x}, \bar{y}, \bar{\epsilon})) \mapsto(x, y, \epsilon)=\left(r \bar{x}, r^{2 n} \bar{y}, r \bar{\epsilon}\right), \bar{\epsilon} \geq 0
$$

The blown-up vector field is the pullback

$$
\bar{X}_{\eta}:=\frac{1}{r^{2 n}-1} \Psi^{*}\left(X_{\epsilon, \eta}+0 \frac{\partial}{\partial \epsilon}\right)
$$

To study the blown-up v.f. \bar{X}_{η} near the blow-up locus $\{0\} \times \mathbb{S}_{+}^{2}$ we use different charts with rectified coordinates.

Period function at turning points

The family Blow-up

Period function at turning points

The family Blow-up

Period function at turning points

The family Blow-up

Period function at turning points

The family Blow-up

Period function at turning points

The family Blow-up

Period function at turning points

The family Blow-up

Period function at turning points

The family Blow-up

Period function at turning points

The family Blow-up

Period function at turning points

The family Blow-up

Period function at turning points

The family Blow-up

Period function at turning points

The family Blow-up

Period function at turning points

The family Blow-up

Period function at turning points

The family Blow-up

Period function at turning points

The family Blow-up

Period function at turning points

The family Blow-up

Period function at turning points

The family Blow-up

In $\{\bar{\epsilon}=1\}$ we have $(x, y, \epsilon)=\left(r \bar{x}, r^{2 n} \bar{y}, r\right)$ and $X_{\epsilon, \eta}$ becomes $X_{F}:=\epsilon^{2 n-1} \bar{X}_{F}$,

$$
\bar{X}_{F}:\left\{\begin{array}{l}
\dot{\bar{x}}=\bar{y}-\left(\bar{x}^{2 n}+\sum_{k=1}^{\ell} a_{k} \epsilon^{2 k} \bar{x}^{2 n+2 k}\right) \\
\dot{\bar{y}}=-\bar{x}^{2 n-1}+\sum_{k=1}^{m} b_{k} \epsilon^{2 k} \bar{x}^{2 n+2 k-1}
\end{array}\right.
$$

Period function at turning points

The family Blow-up

In $\{\bar{\epsilon}=1\}$ we have $(x, y, \epsilon)=\left(r \bar{x}, r^{2 n} \bar{y}, r\right)$ and $X_{\epsilon, \eta}$ becomes $X_{F}:=\epsilon^{2 n-1} \bar{X}_{F}$,

$$
\bar{X}_{F}:\left\{\begin{array}{l}
\dot{\bar{x}}=\bar{y}-\left(\bar{x}^{2 n}+\sum_{k=1}^{\ell} a_{k} \epsilon^{2 k} \bar{x}^{2 n+2 k}\right) \\
\dot{\bar{y}}=-\bar{x}^{2 n-1}+\sum_{k=1}^{m} b_{k} \epsilon^{2 k} \bar{x}^{2 n+2 k-1}
\end{array}\right.
$$

When $\epsilon=0$,

$$
\left\{\begin{array}{l}
\dot{\bar{x}}=\bar{y}-\bar{x}^{2 n} \\
\dot{\bar{y}}=-\bar{x}^{2 n-1}
\end{array}\right.
$$

with first integral $H(\bar{x}, \bar{y})=e^{-2 n \bar{y}}\left(\bar{y}-\bar{x}^{2 n}+1 / 2 n\right)$.

Period function at turning points

The family Blow-up

In $\{\bar{\epsilon}=1\}$ we have $(x, y, \epsilon)=\left(r \bar{x}, r^{2 n} \bar{y}, r\right)$ and $X_{\epsilon, \eta}$ becomes $X_{F}:=\epsilon^{2 n-1} \bar{X}_{F}$,

$$
\bar{X}_{F}:\left\{\begin{array}{l}
\dot{\bar{x}}=\bar{y}-\left(\bar{x}^{2 n}+\sum_{k=1}^{\ell} a_{k} \epsilon^{2 k} \bar{x}^{2 n+2 k}\right) \\
\dot{\bar{y}}=-\bar{x}^{2 n-1}+\sum_{k=1}^{m} b_{k} \epsilon^{2 k} \bar{x}^{2 n+2 k-1} .
\end{array}\right.
$$

When $\epsilon=0$,

$$
\left\{\begin{array}{l}
\dot{\bar{x}}=\bar{y}-\bar{x}^{2 n} \\
\dot{\bar{y}}=-\bar{x}^{2 n-1}
\end{array}\right.
$$

with first integral $H(\bar{x}, \bar{y})=e^{-2 n \bar{y}}\left(\bar{y}-\bar{x}^{2 n}+1 / 2 n\right)$.
IDEA
We use classical tools for study the period function near the origin $(\bar{x}, \bar{y})=(0,0)$ and on the period annulus.

Period function at turning points

The family blow-up: BIfurcation at the origin

For $\epsilon \approx 0$ small,

$$
T_{F}(\bar{x}, \epsilon)=T_{0}(\bar{x})+O(\epsilon)
$$

where $T_{0}(\bar{x})$ is the period function of

$$
\left\{\begin{array}{l}
\dot{\bar{x}}=\bar{y}-\bar{x}^{2 n} \\
\dot{\bar{y}}=-\bar{x}^{2 n-1}
\end{array}\right.
$$

If $n=1$ the center is quadratic. Chicone and Jacobs:

$$
T_{0}(\bar{x})=2 \pi+\frac{\pi}{3} \bar{x}^{2}+O\left(\bar{x}^{3}\right)
$$

Period function at turning points

The family blow-up: BIfurcation at the origin

For $\epsilon \approx 0$ small,

$$
T_{F}(\bar{x}, \epsilon)=T_{0}(\bar{x})+O(\epsilon)
$$

where $T_{0}(\bar{x})$ is the period function of

$$
\left\{\begin{array}{l}
\dot{\bar{x}}=\bar{y}-\bar{x}^{2 n} \\
\dot{\bar{y}}=-\bar{x}^{2 n-1}
\end{array}\right.
$$

If $n=1$ the center is quadratic. Chicone and Jacobs:

$$
T_{0}(\bar{x})=2 \pi+\frac{\pi}{3} \bar{x}^{2}+O\left(\bar{x}^{3}\right)
$$

If $n>1$ a little more technical but $T_{0}(\bar{x}) \rightarrow+\infty$ and $\frac{d}{d \bar{x}} T_{0}(\bar{x}) \rightarrow-\infty$ as $\bar{x} \rightarrow 0^{+}$.

Period function at turning points

The family Blow-up: BIFURCATION at THE INTERIOR

The change of variables $u=\ln \left(1+2 n\left(\bar{y}-\bar{x}^{2 n}\right)\right)$, $v=\bar{x}$ transforms the system with $\epsilon=0$ into the Hamiltonian with separate variables

$$
\left\{\begin{array}{l}
\dot{u}=-2 n v^{2 n-1} \\
\dot{v}=V_{n}^{\prime}(u)
\end{array}\right.
$$

with $V_{n}(u)=\frac{1}{2 n}\left(e^{u}-u-1\right)$.

Period function at turning points

The family blow-up: BIFURCATION AT THE INTERIOR
The change of variables $u=\ln \left(1+2 n\left(\bar{y}-\bar{x}^{2 n}\right)\right)$, $v=\bar{x}$ transforms the system with $\epsilon=0$ into the Hamiltonian with separate variables

$$
\left\{\begin{array}{l}
\dot{u}=-2 n v^{2 n-1} \\
\dot{v}=V_{n}^{\prime}(u)
\end{array}\right.
$$

with $V_{n}(u)=\frac{1}{2 n}\left(e^{u}-u-1\right)$.
If $n=1$ we use Schaaf criterion of monotonicity for potential systems.

Period function at turning points

The family Blow-up: BIFurcation at the interior

The change of variables $u=\ln \left(1+2 n\left(\bar{y}-\bar{x}^{2 n}\right)\right)$, $v=\bar{x}$ transforms the system with $\epsilon=0$ into the Hamiltonian with separate variables

$$
\left\{\begin{array}{l}
\dot{u}=-2 n v^{2 n-1} \\
\dot{v}=V_{n}^{\prime}(u)
\end{array}\right.
$$

with $V_{n}(u)=\frac{1}{2 n}\left(e^{u}-u-1\right)$.
If $n=1$ we use Schaaf criterion of monotonicity for potential systems.
If $n>1$ we use a criterion of strict convexity due to Sabatini for Hamiltonians of the form $H(u, v)=G(u)+F(v)$ with $G(u)=\alpha u^{2 k}+o\left(u^{2 k}\right)$ and $F(v)=\beta v^{2 \ell}+o\left(v^{2 \ell}\right)$.

Period function at turning points

The family blow-up: Bifurcation at the polycycle In $\{\bar{y}=1\}$ we have $(x, y, \epsilon)=\left(R X, R^{2 n}, R E\right)$ and $X_{\epsilon, \eta}$ becomes $X_{D}:=R^{2 n-1} \bar{X}_{D}$,

$$
\bar{X}_{D}:\left\{\begin{array}{l}
\dot{X}=1-\left(X^{2 n}+\sum_{k=1}^{\ell} a_{k} R^{2 k} X^{2 n+2 k}\right)+\frac{1}{2 n} X E^{2 n} G(X, R, \eta) \\
\dot{R}=-\frac{1}{2 n} R E^{2 n} G(X, R, \eta) \\
\dot{E}=\frac{1}{2 n} E^{2 n+1} G(X, R, \eta)
\end{array}\right.
$$

with $G(X, R, \eta)=X^{2 n-1}-\sum_{k=1}^{m} b_{k} R^{2 k} X^{2 n+2 k-1}$.
For $R=E=0$ the system has semi-hyperbolic singularities at $X=-1\left(p_{+}\right)$and $X=1\left(p_{-}\right)$.

Period function at turning points

The family blow-up: BIfurcation at the polycycle

Period function at turning points

The family blow-up: BIfurcation at the polycycle $\left(R_{1}, E_{1}\right) \in \Sigma_{1},\left(R_{2}, E_{2}\right) \in \Sigma_{2},(\bar{x}, \epsilon) \in \Sigma_{3}$.

$$
\begin{gathered}
T\left(R_{1}, E_{1}\right)=T_{1,2}\left(R_{1}, E_{1}\right)+T_{2,3}\left(R_{2}, E_{2}\right)+T_{3,4}(\bar{x}, \epsilon) \\
T_{1,2}\left(R_{1}, E_{1}\right)=\frac{1}{R_{1}^{2 n-1}} I\left(R_{1}, E_{1}\right), I>0 C^{\infty} \\
T_{2,3}\left(R_{2}, E_{2}\right)=\frac{2 n}{\left(R_{2} E_{2}\right)^{2 n-1}} \int_{E_{2}}^{E_{3}} \frac{d E}{E^{2} \kappa\left(E, R_{2}, E_{2}\right)}, \kappa>0 \text { bounded } \\
T_{3,4}(\bar{x}, \epsilon)=\frac{1}{\epsilon^{2 n-1}} \bar{l}(\bar{x}, \epsilon), \bar{l} C^{\infty}
\end{gathered}
$$

Period function at turning points

The family blow-up: BIfurcation at the polycycle $\left(R_{1}, E_{1}\right) \in \Sigma_{1},\left(R_{2}, E_{2}\right) \in \Sigma_{2},(\bar{x}, \epsilon) \in \Sigma_{3}$.

$$
\begin{gathered}
T\left(R_{1}, E_{1}\right)=T_{1,2}\left(R_{1}, E_{1}\right)+T_{2,3}\left(R_{2}, E_{2}\right)+T_{3,4}(\bar{x}, \epsilon) \\
T_{1,2}\left(R_{1}, E_{1}\right)=\frac{E_{1}^{2 n-1}}{\left(R_{1} E_{1}\right)^{2 n-1}} I\left(R_{1}, E_{1}\right), I>0 C^{\infty}
\end{gathered}
$$

$$
T_{2,3}\left(R_{2}, E_{2}\right)=\frac{2 n}{\left(R_{1} E_{1}\right)^{2 n-1}} \int_{E_{2}}^{E_{3}} \frac{d E}{E^{2} \kappa\left(E, R_{2}, E_{2}\right)}, \kappa>0 \text { bounded }
$$

$$
T_{3,4}(\bar{x}, \epsilon)=\frac{1}{\left(E_{1} R_{1}\right)^{2 n-1}} \bar{l}(\bar{x}, \epsilon), \bar{l} C^{\infty}
$$

$R_{1} E_{1}=R_{2} E_{2}=\epsilon$

Period function at turning points

The family blow-up: Bifurcation at the polycycle

$$
T\left(R_{1}, E_{1}\right)=\frac{2 n}{\left(R_{1} E_{1}\right)^{2 n}}\left(\int_{E_{2}}^{E_{3}} \frac{d E}{E^{2} \kappa\left(E, R_{2}, E_{2}\right)}+I\left(R_{1}, E_{1}\right)\right)
$$

I bounded C^{∞}.
We take the Lie derivative \mathcal{L}

$$
\mathcal{L} T:=R_{1} \frac{\partial T}{\partial R_{1}}-E_{1} \frac{\partial T}{\partial E_{1}}
$$

and we show, after computations, $\mathcal{L} T>0$ and tending to infinity as $\epsilon \rightarrow 0$.

Period function at turning points

Gluing together
Let $n \geq 1$ and $T(y ; \epsilon)$ the period function of the center at the origin of $X_{\epsilon, \eta}$. For each $\epsilon>0, \epsilon \approx 0$ we consider the intervals $\left.] 0, \epsilon^{2 n} \bar{y}_{0}\right],\left[\epsilon^{2 n} \bar{y}_{1}, \epsilon^{2 n} \bar{y}_{2}\right]$ and $\left[\epsilon^{2 n} \bar{y}_{3}, y_{0}\right]$, where $\bar{y}_{0}, \bar{y}_{1}, y_{0}>0$ are small and independent of ϵ, and $\bar{y}_{2}, \bar{y}_{3}>0$ are large and independent of ϵ.

Period function at turning points

GLuing together
Let $n \geq 1$ and $T(y ; \epsilon)$ the period function of the center at the origin of $X_{\epsilon, \eta}$. For each $\epsilon>0, \epsilon \approx 0$ we consider the intervals $\left.] 0, \epsilon^{2 n} \bar{y}_{0}\right],\left[\epsilon^{2 n} \bar{y}_{1}, \epsilon^{2 n} \bar{y}_{2}\right]$ and $\left[\epsilon^{2 n} \bar{y}_{3}, y_{0}\right]$, where $\bar{y}_{0}, \bar{y}_{1}, y_{0}>0$ are small and independent of ϵ, and $\bar{y}_{2}, \bar{y}_{3}>0$ are large and independent of ϵ. For \bar{y}_{0}, y_{0} small and \bar{y}_{3} large, it suffices to decrease \bar{y}_{1} and increase \bar{y}_{2} to cover $] 0, y_{0}$].

Period function at turning points

GLUING TOGETHER
Let $n \geq 1$ and $T(y ; \epsilon)$ the period function of the center at the origin of $X_{\epsilon, \eta}$. For each $\epsilon>0, \epsilon \approx 0$ we consider the intervals $\left.] 0, \epsilon^{2 n} \bar{y}_{0}\right],\left[\epsilon^{2 n} \bar{y}_{1}, \epsilon^{2 n} \bar{y}_{2}\right]$ and $\left[\epsilon^{2 n} \bar{y}_{3}, y_{0}\right]$, where $\bar{y}_{0}, \bar{y}_{1}, y_{0}>0$ are small and independent of ϵ, and $\bar{y}_{2}, \bar{y}_{3}>0$ are large and independent of ϵ. For \bar{y}_{0}, y_{0} small and \bar{y}_{3} large, it suffices to decrease \bar{y}_{1} and increase \bar{y}_{2} to cover $] 0, y_{0}$].

- In $] 0, \epsilon^{2 n} \bar{y}_{0}$] we use the local result in $\{\bar{\epsilon}=1\}$ and there are no critical periods.

Period function at turning points

GLUING TOGETHER
Let $n \geq 1$ and $T(y ; \epsilon)$ the period function of the center at the origin of $X_{\epsilon, \eta}$. For each $\epsilon>0, \epsilon \approx 0$ we consider the intervals $\left.] 0, \epsilon^{2 n} \bar{y}_{0}\right],\left[\epsilon^{2 n} \bar{y}_{1}, \epsilon^{2 n} \bar{y}_{2}\right]$ and $\left[\epsilon^{2 n} \bar{y}_{3}, y_{0}\right]$, where $\bar{y}_{0}, \bar{y}_{1}, y_{0}>0$ are small and independent of ϵ, and $\bar{y}_{2}, \bar{y}_{3}>0$ are large and independent of ϵ. For \bar{y}_{0}, y_{0} small and \bar{y}_{3} large, it suffices to decrease \bar{y}_{1} and increase \bar{y}_{2} to cover $] 0, y_{0}$].

- In $] 0, \epsilon^{2 n} \bar{y}_{0}$] we use the local result in $\{\bar{\epsilon}=1\}$ and there are no critical periods.
- In $\left[\epsilon^{2 n} \bar{y}_{1}, \epsilon^{2 n} \bar{y}_{2}\right]$ we use the global result in $\{\bar{\epsilon}=1\}$ showing that if $n=1$ the period is increasing and if $n>1$ there is a global minimum.

Period function at turning points

GLuing together
Let $n \geq 1$ and $T(y ; \epsilon)$ the period function of the center at the origin of $X_{\epsilon, \eta}$. For each $\epsilon>0, \epsilon \approx 0$ we consider the intervals $\left.] 0, \epsilon^{2 n} \bar{y}_{0}\right]$, $\left[\epsilon^{2 n} \bar{y}_{1}, \epsilon^{2 n} \bar{y}_{2}\right]$ and $\left[\epsilon^{2 n} \bar{y}_{3}, y_{0}\right]$, where $\bar{y}_{0}, \bar{y}_{1}, y_{0}>0$ are small and independent of ϵ, and $\bar{y}_{2}, \bar{y}_{3}>0$ are large and independent of ϵ. For \bar{y}_{0}, y_{0} small and \bar{y}_{3} large, it suffices to decrease \bar{y}_{1} and increase \bar{y}_{2} to cover $] 0, y_{0}$].

- In $] 0, \epsilon^{2 n} \bar{y}_{0}$] we use the local result in $\{\bar{\epsilon}=1\}$ and there are no critical periods.
- In $\left[\epsilon^{2 n} \bar{y}_{1}, \epsilon^{2 n} \bar{y}_{2}\right]$ we use the global result in $\{\bar{\epsilon}=1\}$ showing that if $n=1$ the period is increasing and if $n>1$ there is a global minimum.
- In $\left[\epsilon^{2 n} \bar{y}_{3}, y_{0}\right]$ we use the results in $\{\bar{y}=1\}$ and there are no critical periods.

Many thanks for your attention

References

國 F. Dumortier. Compactification and desingularization of spaces of polynomial Liénard equations. J. Differential Equations 224 (2006) 296-313.

E P. De Maesschalck, F. Dumortier. The period function of classical Liénard equations. J. Differential Equations 233 (2007) 380-403.

戋 R. Huzak, D. Rojas. Period function of planar turning points. Elec. J. Qual. Theo. of Diff. Equ. 2021, No. 16 1-21.

