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Outlines:
- Basics of normal form theory
- A module of formal vector fields with a special grading
- An algorithm for computing normal forms in the module
- Normal forms of generalized vector fields



Main questions in the normal form theory:
analyze the structure of normal form,
compute it,
analyze convergence of the obtained series.

• Our work concerns only with algorithms for computing of a normal forms.

• The classical approach developed by Poincare, Dulac and Lyapunov and
requires substitution series into series.
The other one is based on Lie transformation and was developed starting from
the works of Birkhoff, Steinberg, Chen and others. Using this way a
normalization is performed as a sequence of linear transformations.
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Notations:
F a field (R or C),
Vn the space of vector fields v : Fn → Fn which coordinates are power
series in x1, . . . , xn (we will say ”in x”) vanishing at the origin, which can
be convergent or merely formal,
Vn

j be the vector space of polynomial vector fields on Fn, that is, vector
fields v : Fn → Fn such that each component vi (i = 1, . . . , n) of v is a
homogeneous polynomial of degree j.

Vn and Vn
j are vector spaces over F and Vn = ⊕∞j=0Vn

j .



ẋ = u(a, x), (1)
a = (a1, . . . , a`) is an `-tuple of parameters, u(a, x) ∈ Vn and all terms of
u(a, x) depend polynomially on parameters a.
Vn can be viewed also as a module over the ring of power series in x1, . . . , xn.
It has natural grading by the degree of polynomials:

ẋ =
∞∑
j=1

uj (a, x), (2)

where uj (a, x) is a homogeneous polynomial of degree j in x , that is,
uj (a, x) ∈ Vn

j .
The normalization of (1) is performed according to this grading.

• We use another approach which is based on the grading of the power series
by the degree of polynomials in the parameters of the system:

ẋ =
∞∑

s=1

ūs (a, x), (3)

where ūs is a homogeneous polynomial of degree s in variables a.
We work with formal vector fields using the grading of the formal series by
polynomials which are homogeneous with respect to parameters a of u(a, x).
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As the result we will obtain an algorithm for computing normal forms which
has two advantages with respect to the traditional ones:

– It allows performing the parallelization of normal forms computations.
Namely, for (1) the terms of powers series in a normal form have the form
p(a)x r , where x r is a resonant monomial and p(a) =

∑
α∈Supp(p) pαaα is

a polynomial in a. Using traditional methods one can compute only the
whole term p(a)x r .
We can compute any term pαaα of p(a) without computing the whole
polynomial p(a).

– Only arithmetic operations with numbers are used.
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ẋ = f (x), f (x) = Ax +
∞∑
j=2

fj (x), x ∈ Fn, (4)

fj (x) is an n-dimensional vector valued homogeneous polynomial of degree j.
A is a diagonal matrix with the eigenvalues λ1, . . . , λn, x = (x1, . . . , xn)T . Let
λ = (λ1, . . . , λn)T ∈ Fn. Set N0 = N ∪ {0}. For α = (α1, . . . , αn) ∈ Nn

0 we
denote

〈λ, α〉 =
n∑

i=1

αiλi , |α| = α1 + · · ·+ αn

and xα = xα1
1 xα2

2 · · · x
αn
n . x is a column vector and xα is a monomial.

Normalizing transformation:

x = y + h̃(y) = y +
∞∑
j=2

h̃j (y). (5)

ẏ = Ay + g̃(y), g̃(y) =
∞∑
j=2

g̃j (y), g̃j (y) ∈ Vn
j , j = 2, 3, . . . . (6)

xα in the k-th entry is a resonant monomial if if is of the form g (α)yαek with

〈λ, α〉 − λk = 0. (7)

We say that system (6) is in the Poincaré–Dulac normal form (or, simply in the
normal form) if g̃(y) contains only resonant terms.



The homological operator:

(£v)(x) = Dv(x)Ax − Av(x). (8)

Let
£j : Vn

j → Vn
j

be the restriction of £ to Vn
j . The £j is semisimple with the eigenvalues

βα,i = 〈α, λ〉 − λi and (basis) eigenvectors pi,α = ei xα (|α| = j, i = 1, . . . , n).
The kernel of £j is spanned by all monomials ei xα, where i and α satisfy
βα,i = 0.

Vn
j = im£j ⊕ ker £j .

Assume that equation (4) has already been normalized to order j − 1, so (6) is
a normal form of (4) up to order j − 1.

Solve
£j h̃j = fj − g̃j , (9)

With this g̃j (6) is in the normal form to order j.
Perform the transformation x → x + h̃j (x)
Re-expand the series f (x) up to order j + 1.



Another setting for computation the normal form is using the Lie brackets.

[w , v ] = D(v)w − D(w)v

. The adjoint map: w(x) ∈ Vn,

ad w(x) = [w(x), ·] : Vn → Vn.

In particular, £ = ad Ax and (6) is in the normal form iff

(ad Ax) g̃k = 0, for all k = 2, 3, . . . .

Let ẋ = a(x), dx/ds = b(x), b(0) = 0 with the flow ψs . By the Theorem on
Lie series for vector fields

ψ′s (x)−1a(ψs (x)) = a(x) + s(ad b)a(x) + s2

2 (ad b)2a(x) + . . . .

If (4) is in the normal form up to order j − 1 solve

£j h̃j = fj − g̃j ,

for h̃j and g̃j and performs in (4) the transformation

x → ψs (x)

with s = 1 and ψs (x) being the flow of
dx
ds = h̃j (x).

x = Hm(y) ◦ · · · ◦ H2(y), Hk = exp(h̃k ), k = 2, . . . ,m.



A grading of the formal vector fields module
Assume that the terms of the function f (x) in (4) depends polynomially on
parameters a1, . . . , a` and let a = (a1, . . . , a`), so the terms of f (x) = f (a, x)
are

f (i)
(µ1,...,µ`,β1,...,βn)a

µ1
1 · · · a

µ`
` xβ1

1 · · · x
βn
n . (10)

Example.

ẋ1 = x1 + a(1)
10 x 2

1 + a(1)
01 x1x2 + a(1)

−13x 3
2 = x1(1 + a(1)

10 x1 + a(1)
01 x2 + a(1)

−13x−1
1 x 3

2 ),

ẋ2 =− x2 + a(2)
10 x1x2 + a(2)

01 x 2
2 + a(2)

02 x 3
2 = x2(−1 + a(2)

10 x1 + a(2)
01 x2 + a(2)

02 x 2
2 ).

(11)
The normal form of (11) up to order 5 is

ẋ = diag(1,−1)x + g2(x) + g3(x) + g4(x) + g5(x), (12)

where x = (x1, x2)T , g2(x) = g4(x) = 0 and

g3(x) = (x1(−a(1)
01 a(1)

10 + a(1)
01 a(2)

10 )x1x2, x2(−a(1)
01 a(2)

10 + a(2)
01 a(2)

10 )x1x2)T ,

g5(x) = (x1((a(1)
01 )2a(1)

10 a(2)
10 + a(1)

01 a(1)
10 a(2)

01 a(2)
10 − 2(a(1)

01 )2(a(2)
10 )2)x 2

1 x 2
2 ,

x2(−a(1)
01 a(1)

10 a(2)
01 a(2)

10 + a(1)
10 a(2)

02 a(2)
10 + 2(a(1)

01 )2(a(2)
10 )2 − a(1)

01 a(2)
01 (a(2)

10 )2 + 2a(2)
02 (a(2)

10 )2)x 2
1 x 2

2 )T .

12 monomials involved parameters, four monomials x 2
1 x2, x1x 2

2 , x 3
1 x 2

2 , x 2
1 x 3

2 .



ẋk = λk xk + xk
∑
ı̄∈Ωk

a(k)
ı̄ x ı̄ (k = 1, . . . , n), (13)

Ωk (k = 1, . . . , n) is a fixed ordered set of multi-indices (n-tuples)
ı̄ = (i1, . . . , in), whose k-th entry is from N−1 = {−1} ∪N0 and all other entries
are from N0.
` – the number of parameters a(k)

ı̄ in (13).
Let L̃ be the `× n matrix which rows are all n-tuples ı̄

ẋ1 = x1 + a(1)
10 x 2

1 + a(1)
01 x1x2 + a(1)

−13x 3
2 = x1(1 + a(1)

10 x1 + a(1)
01 x2 + a(1)

−13x−1
1 x 3

2 ),

ẋ2 =− x2 + a(2)
10 x1x2 + a(2)

01 x 2
2 + a(2)

02 x 3
2 = x2(−1 + a(2)

10 x1 + a(2)
01 x2 + a(2)

02 x 2
2 ).

L̃ =
(

1 0 −1 1 0 0
0 1 3 0 1 2

)T

For ν = (ν1, . . . , ν`) ∈ N`0
L(ν) = νL̃. (14)

L(ν) is the row vector L(ν) = (L1(ν), . . . , Ln(ν)). L : N`0 → Zn.

L(ν) = (ν1 − ν3 + ν4, ν2 + 3ν3 + ν5 + 2ν6).
• We use L(ν) to grade the space of parameters (L(ν) is degree of a
monomial).



Denote by a the ordered (according to the order in Ωk , k = 1, 2, . . . , n) `-tuple
of parameters of system (13),

a = (a(1)
ı̄(1) , a

(1)
ı̄(2) , . . . , a

(n)
ı̄(`) )

by F[a] the ring of polynomials in variables a(1)
ı̄(1) , . . . , a

(n)
ı̄(`) over F. Any

monomial in parameters of (13) has the form

aν = (a(1)
ı̄(1) )

ν1 (a(1)
ı̄(2) )

ν2 · · · (a(n)
ı̄(`) )

ν` (ν ∈ N`0). (15)

Definition 1
For m ∈ Zn, a (Laurent) polynomial p(a), p =

∑
ν∈Supp(p) p(ν)aν , is an

m-polynomial if for every ν ∈ Supp(p) ⊂ N`−1, L(ν) = m.
For a given m ∈ Zn let Rm be the subset of F[a] consisting of all
m-polynomials. Let

R = ⊕m∈Zn Rm.

Since
Rm1 Rm2 ⊆ Rm1+m2 ,

R is a graded ring, R0 = F.
Rm as well as R are vector spaces over F for the usual addition and the
multiplication by numbers from F.



M = {(m1, . . . ,mn) ∈ Nn
−1 : |m| ≥ 0,m ∈ imL,mj = −1 for at most one j}.

Let Mj be the space of vector fields of the form

ẋj = xj
∑

m∈M,
mi≥0 if i 6=j

p(m)
j (a)x m (j = 1, . . . , n)

where p(m)
j (a) ∈ Rm for all j = 1, . . . , n.

Cf. Usual grading of power series:

ẋj = xj

∞∑
k=1

∑
|m|=k

q(m)
j (a)x m (j = 1, . . . , n)

Let
M = M1 × · · · ×Mn.

Denoting p(m)(a) =
∑n

j=1 ej p(m)
j (a), for every member of M there exists a finite

or infinite set L ⊂M such that it can be written as∑
m∈L

x � p(m)(a)x m (16)

with � denoting Hadamard multiplication.
M is an additive group and moreover, M is a module over the ring (Fn,+,�)
with the multiplicative unit 1̄ =

∑n
i=1 ei ∈ Fn.



Lie brackets in M

Lemma 1
Any element Θ = (Θ(1), . . . ,Θ(n)) ∈ M can be written in the form

Θ =
∑
µ∈ω

(θ(µ)� x)aµx L(µ), (17)

where θ(µ) = (θ1(µ), . . . , θn(µ)), ω is a finite or infinite subset of N`0 such that
if µ ∈ ω then L(µ) ∈M. Additionally, if Lj (µ) = −1, then θ(µ) = θj (µ)ej .
NB. In (17) aµ is L(µ)-polynomial.
Lie bracket:

[Θ,Φ] := (DΦ)Θ− (DΘ)Φ
for any Θ,Φ ∈ M.

Lemma 2
If Θ = (θ � x)aµx L(µ) and Φ = (φ� x)aνx L(ν), where µ, ν ∈ N`0,
θ = (θ1, . . . , θn)T and φ = (φ1, . . . , φn)T , then

[Θ,Φ] = ((〈L(ν), θ〉φ− 〈L(µ), φ〉θ)� x)aµ+νx L(µ+ν) ∈ M. (18)



Corollary 1
If Θ,Φ ∈ M, then [Θ,Φ] ∈ M. Moreover, if

Φ =
∑
ν∈ω1

(φ(ν)� x)aνxL(ν), Θ =
∑
µ∈ω2

(θ(µ)� x)aµxL(µ)

then

[Θ,Φ] =
∑
µ∈ω

∑
ν∈ω1

((〈L(µ), φ(ν)〉θ(µ)− 〈L(ν), θ(µ)〉φ(ν))� x)aµ+νxL(µ+ν). (19)

Let U`s , s ≥ 0, be the space of polynomial vector fields of the form∑
|µ|=s

(θ(µ)� x)aµxL(µ). (20)

Then M =
⊕∞

s=0 U
`
s .

Cf. Vn
j is the space of polynomial vector fields of degree j.

Us = {(1̄� x)aµxL(µ) : |µ| = s}. (21)
Any vector field Θs of the form (20) can be written as

Θs =
∑
|µ|=s

(θ(µ)� (xaµxL(µ))) =
∑
|µ|=s

(θ(µ)� x)aµxL(µ),

=⇒ U`s is a module generated by Us over the ring (Fn,+,�) with the operation of
multiplication by the elements of the ring being the Hadamard product.



Definition 2
We say that Θ ∈ M is of level s if Θ ∈ U`s and Θ ∈ M is of level at least s if
each term

Θ = (θ � x)aµx L(µ)

of Θ is in some of U`s+j , where j ∈ N0.
By Lemma 2 if Θ ∈ U`s , Φ ∈ U`t and ad Θ is the adjoint operator acting on Φ
by

(ad Θ) Φ = [Θ,Φ],
then (ad Θ)i Φ is an element of U`is+t , that is,

(ad Θ)i : U`t → U`is+t . (22)

N.B. (ad Θ)i ”lifts” the space U`t to the space U`is+t .



The normal form algorithm
Any equation of the form (13) can be written as

ẋ = a0(x) + a1(x) + a2(x) + · · · = a(x), (23)

where a0(x) = λ� x , as (x) ∈ U`s for s ≥ 1,

as (x) =
∑
µ∈σ(s)

(α(µ)� x)aµx L(µ),

where α(µ) ∈ Fn. Since a0(x) ∈ U`0 and the nonlinear part a1(x) of (13) is from
U`1 , equation (13) is of the form (23).

ẋ1 = x1 + a(1)
10 x 2

1 + a(1)
01 x1x2 + a(1)

−13x 3
2 = x1(1 + a(1)

10 x1 + a(1)
01 x2 + a(1)

−13x−1
1 x 3

2 ),

ẋ2 =− x2 + a(2)
10 x1x2 + a(2)

01 x 2
2 + a(2)

02 x 3
2 = x2(−1 + a(2)

10 x1 + a(2)
01 x2 + a(2)

02 x 2
2 ).

a0(x) =
(

1
−1

)
�
(

x1

x2

)
,

a1(x) =
(

1
0

)
�
(

x1

x2

)
a(1)

10 x1 +
(

1
0

)
�
(

x1

x2

)
a(1)

01 x2 +
(

1
0

)
�
(

x1

x2

)
a(1)
−13x−1

1 x 3
2 +(

0
1

)
�
(

x1

x2

)
a(2)

10 x1 +
(

0
1

)
�
(

x1

x2

)
a(2)

01 x2 +
(

0
1

)
�
(

x1

x2

)
a(2)

02 x 2
2 .



Lemma 3
If

〈L(µ), λ〉 = 0, (24)
then all entries of the vector field

(α(µ)� x)aµx L(µ) (25)

are resonant terms.
Lemma 3 justifies the following definition.

Definition 3
It is said that a term of the form (25) of the right-hand side of (23) is resonant
if (24) holds.



Definition 4
We say that equation (23) is in the normal form up to level s if all
non-resonant terms in a1(x), . . . , as (x) are equal to zero.
If equation (23) is in the normal form for all levels s ∈ N, then it is in the
normal form in the usual sense.
We say that the operator £a : M → M which acts on e (17) by

£a(
∑
µ∈ω

(θ(µ)� x)aµx L(µ)) =
∑
µ∈ω

〈L(µ), λ〉(θ(µ)� x)aµx L(µ)) (26)

is the homological operator of (23) £a is a homomorphism of the module M
over Fn. Indeed, for any φ ∈ Fn

£a(φ�
∑
µ∈ω

(θ(µ)� x)aµx L(µ)) =
∑
µ∈ω

〈L(µ), λ〉(φ� θ(µ)� x)aµx L(µ)

= φ� £a(
∑
µ∈ω

(θ(µ)� x)aµx L(µ))).

The restriction of £a on U`s is denoted by £a
s . Obviously, £a

s : U`s → U`s . From
(26) the set Us defined by (21) is the set of basis eigenvectors of £a

s and

U`s = im£a
j ⊕ ker £a

j .



Assume that equation (23) is in the normal form up to level s − 1, s ≥ 1, that
is, for terms of the form (25) appearing in (23) if |µ| ≤ s − 1 and
〈L(µ), λ〉 6= 0, then α(µ) = 0. Then the homological equation

£a
s (hs ) = as − gs

can be solved for hs and gs as follows:

hs (x) =
∑

|µ|=s,〈L(µ),λ〉6=0

1
〈L(µ), λ〉 (α(µ)� x)aµx L(µ), (27)

gs (x) =
∑

|µ|=s,〈L(µ),λ〉=0

(α(µ)� x)aµx L(µ). (28)

Theorem 1
Assume that equation (23) is in the normal form up to level s − 1, s ≥ 1, and
let

Hs (x) = exp(hs (x)) (29)
where hs is defined by (27). Then performing the substitution y = Hs (x) and
changing y to x we obtain from (23) an equation, which the right hand side is
from M and is in the normal form up to level s.



Proof.
According to the theorem on Lie series for vector fields after transformation
(29) we obtain from (23) the vector field

a(x) + (ad hs )a(x) +
∞∑
i=2

1
i! (ad hs )i a(x). (30)

By (22) the last summand is of the level at least s + 1 and for the first two we
have

a(x) + (ad hs )a(x) = a(x) + [hs (x), a(x)] =
a0(x) + a1(x) + · · ·+ as−1(x) + as (x) + [hs (x), a0(x)] + . . . ,

where the dots stand for the terms of level at least s + 1.
By (18), (27) and (28) as (x) + [hs (x), a0(x)] = gs (x). Since by our assumption
(23) is in the normal form up to level s − 1 the equation (30) is in the normal
form up to level s.



Corollary 2
There are polynomial maps H1(x), . . . ,Hs (x), such that equation (23) is
transformed to an equation which is in the normal form up to level s by the
transformation y = Hs ◦ · · · ◦ H1.

Algorithm A. Set a0(x) := Ax , a1(x) := F (x), ak (x) := 0 for k = 2, 3, . . . ,m.
For s = 1, . . . ,m do the following:
(i) define hs and gs by (27) and (28);
(ii) compute

b(x) =
s−1∑
k=0

bm−k
s c∑

i=1

1
i! (ad hs (x))i ak (x)

and write b(x) =
∑m

i=s+1 bi (x), where bi (x) ∈ U`i ;
(iii) as = gs , ai = bi (x) for i = s + 1, . . . ,m.

Proposition 1
If system (23) is in normal form up to level s then it is in the normal form up
to order at least s + 1.



Generalized formal vector fields
Definition 5
Let α be a map defined on some subset ω of N`0

α : ω ⊂ N`0 → Fn,

where α assigns to every ν ∈ ω an n-tuple

αν = (α1(ν), . . . , α`(ν)).

We say that the n-tuple of the formal power series

α̂ =
∑
ν∈ω

ανaν , (31)

where ω = Supp(α̂), is a generalized vector field.
In more details (31) is

α̂ =
∑
ν∈ω

αν(a(1)
ı̄(1) )

ν1 (a(1)
ı̄(2) )

ν2 · · · (a(n)
ı̄(`n) )

ν` , αν ∈ Fn.

(31) is not a vector field in the usual sense – usual vector field is defined
assigning to a vector from F` a vector of the same dimension, but if a series
(31) converges it assigns to a point from F` a vector from Fn.



Denote the set of all formal vector fields defined by (31) by A.
A is a module over the ring (Fn,+,�).
For any k ∈ N0, let Ak be the subset of all elements of A of the form∑

µ:|µ|=k

αµaµ.

Ak is a module over the ring (Fn,+,�), A is a direct sum of Ak , k = 0, 1, . . . .
Recall that we consider M as the direct sum of modules U`s over Fn,
s = 0, 1, 2, . . . , and define a module homomorphism

T : A → M

T

(∑
µ∈ω

θµaµ
)

=
∑
µ∈ω

(θµ � x)aµx L(µ). (32)

T is an isomorphism.



The Lie bracket of θ̂ =
∑

µ∈ω θµaµ and φ̂ =
∑

ν∈ω1
φνaν :

[θ̂, φ̂] = T−1([T(θ̂),T(φ̂)]).

By (19) and (32)

[θ̂, φ̂] =
∑
µ∈ω

∑
ν∈ω1

(〈L(µ), φν〉θµ − 〈L(ν), θµ〉φν) aµ+ν . (33)

Since
T
(

[ψ̂, [θ̂, φ̂]]
)

= [T(ψ̂),T([θ̂, φ̂])] = [T(ψ̂), [T(θ̂),T(φ̂)])],
it is easily seen that for the Lie bracket in A defined by (33) the Jacobi identity
holds, so A is a Lie algebra and so T defines a Lie algebra isomorphism.



Let α̂ be the image of the right hand side of

ẋ = a0(x) + a1(x) + a2(x) + · · · = a(x),

under the isomorphism T−1:

T−1(a(x)) =
∞∑

k=0

α̂k ,

where
α̂0 = λ, α̂k =

∑
µ∈σ(k)

αµaµ for k ≥ 1. (34)

Definition 6
It is said that the generalized vector field α̂ =

∑∞
k=0 α̂k (where α̂k is of the

form (34)) is in the normal form up to level s if the coefficients of all
non-resonant terms in α̂1, . . . , α̂s are equal to zero.
Assume that α̂ is in the normal form up to level s − 1, s ≥ 1. Let

η̂s =
∑

µ:|µ|=s,
〈L(µ),λ〉6=0

1
〈L(µ), λ〉αµaµ, ζ̂s =

∑
µ:|µ|=s,
〈L(µ),λ〉=0

αµaµ. (35)

that is η̂s = T−1(hs (x)), ζ̂s = T−1(gs (x)), where hs (x) and gs (x) are defined
by (27) and (28), respectively.



Algorithm B.
Set α̂0 := λ, α̂1 :=

∑
ı̄∈Ω ek a(k)

ı̄ , α̂k := 0 for k = 2, 3, . . . ,m.
For s = 1, . . . ,m do the following:

(i) Define η̂s and ζ̂s by (35);
(ii) Compute

ξ̂ =
s−1∑
k=0

bm−k
s c∑

i=1

1
i! (ad η̂s )i α̂k

(where ad η̂s := [η̂s , ·] is the adjoint operator acting on A) and represent
ξ̂ in the form ξ̂ =

∑m
i=s ξ̂i , where ξ̂i ∈ Û`

i ;

(iii) Let α̂s = ζ̂s , α̂s+1 = ξ̂s+1, . . . , α̂m = ξ̂m.
The obtained vector field α̂ is in the normal form up to level m.



By Proposition 1 if system (23) is in normal form up to level s then it is in the
normal form up to order at least s + 1. When α̂ is in the normal form up to
level m, a normal form of

ẋk = λk xk + xk
∑
ı̄∈Ωk

a(k)
ı̄ x ı̄ (k = 1, . . . , n), (13)

can be built up from α̂ using the following procedure:

Set gk (x) = (0, 0, . . . , 0)T for k = 1, . . . ,m. For µ ∈ ∪m
k=1σ(k) do the

following:
if αµ 6= 0, |L(µ)| = k, then gk (x) = gk (x) + (αµ � x)aµx L(µ).

ẋ = Ax +
m∑

k=1

gk (x)

is the normalization of (13) up to order m.



By Proposition 1 if system (23) is in normal form up to level s then it is in the
normal form up to order at least s + 1. When α̂ is in the normal form up to
level m, a normal form of

ẋk = λk xk + xk
∑
ı̄∈Ωk

a(k)
ı̄ x ı̄ (k = 1, . . . , n), (13)

can be built up from α̂ using the following procedure:

Set gk (x) = (0, 0, . . . , 0)T for k = 1, . . . ,m. For µ ∈ ∪m
k=1σ(k) do the

following:
if αµ 6= 0, |L(µ)| = k, then gk (x) = gk (x) + (αµ � x)aµx L(µ).

ẋ = Ax +
m∑

k=1

gk (x)

is the normalization of (13) up to order m.



Example. Consider system

ẋ1 = x1 + a(1)
10 x 2

1 + a(1)
01 x1x2 + a(1)

−13x 3
2 = x1(1 + a(1)

10 x1 + a(1)
01 x2 + a(1)

−13x−1
1 x 3

2 ),

ẋ2 =− x2 + a(2)
10 x1x2 + a(2)

01 x 2
2 + a(2)

02 x 3
2 = x2(−1 + a(2)

10 x1 + a(2)
01 x2 + a(2)

02 x 2
2 ).

(12)
For µ ∈ N`0 we will use the abbreviation [µ] = [µ1, . . . , µ`] := aµ.
By Proposition 1 in order to compute the normal form of (11) up to order 5 it
is sufficient to compute the normal form of (11) up to level 4.
At the level 0 the set σ(0) consists of only one vector, (0, 0, 0, 0, 0, 0) with

α̂0 = α(0,0,0,0,0,0) =
(

1
−1

)
[0, 0, 0, 0, 0, 0].

Passing to the level 1, σ(1) is the set of vectors

eT
1 , . . . , eT

6 , (36)

which form the standard basis of Z6. The vector field α̂1 is obtained by using
the nonlinear terms of (11):

α̂1 =
(

1
0

)
[eT

1 ] +
(

1
0

)
[eT

2 ] +
(

1
0

)
[eT

3 ] +
(

0
1

)
[eT

4 ] +
(

0
1

)
[eT

5 ] +
(

0
1

)
[eT

6 ]

=
(

1
0

)
a(1)

10 +
(

1
0

)
a(1)

01 +
(

1
0

)
a(1)
−13 +

(
0
1

)
a(2)

02 +
(

0
1

)
a(2)

10 +
(

0
1

)
a(1)

01 .



Then by (i) of Algorithm B for s = 1 we have ζ1 = 0̄ and

η̂1 =
(

1
0

)
[eT

1 ]−
(

1
0

)
[eT

2 ]− 1
4

(
1
0

)
[eT

3 ]− 1
2

(
0
1

)
[eT

4 ] +
(

0
1

)
[eT

5 ]−
(

0
1

)
[eT

6 ]

=
(

1
0

)
a(1)

10 −
(

1
0

)
a(1)

01 −
1
4

(
1
0

)
a(1)
−13 −

1
2

(
0
1

)
a(2)

02 +
(

0
1

)
a(2)

10 −
(

0
1

)
a(1)

01 .

When we know level s, that is the set σ(s), the next level, the set σ(s + 1), is
obtained by adding to the elements of σ(s), one of vectors (36).
According to the Algorithm B we have to set

α̂2 = α̂3 = α̂4 = (0, 0, . . . , 0)T . (37)

Next we compute ξ̂1 + · · ·+ ξ̂4 according to (ii), that is, we compute the sum

1
2 (ad η̂1)2α̂0 + 1

3! (ad η̂1)3α̂0 + 1
4! (ad η̂1)4α̂0+

(ad η̂1)α̂1 + 1
2 (ad η̂1)2α̂1 + 1

3! (ad η̂1)3α̂1+

α̂2 + (ad η̂1)α̂2 + 1
2 (ad η̂1)2α̂2+

α̂3 + (ad η̂1)α̂3+
α̂4.



Then, for level 1 we have
(ad η̂1)α̂0 + α̂1 = 0̄ (38)

and, for level 2 we obtain

α̂2 + (ad η̂1)α̂1 + 1
2 (ad η̂1)2α̂0. (39)

By (37) α̂2 = 0 and for the second term of the sum given above

(ad η̂1)α̂1 =
(
−2
0

)
[1, 1, 0, 0, 0, 0] +

(
−5/2

0

)
[1, 0, 1, 0, 0, 0] +

(
3/4

0

)
[0, 1, 1, 0, 0, 0]+(

1/2
0

)
[0, 1, 0, 1, 0, 0] +

(
2
−2

)
[0, 1, 0, 0, 1, 0] +

(
−3/4

0

)
[0, 0, 1, 1, 0, 0]+(

15/4
−5/4

)
[0, 0, 1, 0, 1, 0] +

(
−9/4

0

)
[0, 0, 1, 0, 0, 1] +

(
0
3

)
[0, 0, 0, 1, 1, 0]+(

0
−1/2

)
[0, 0, 0, 1, 0, 1] +

(
0
2

)
[0, 0, 0, 0, 1, 1].

From (38) we observe that (ad η̂1) α̂0 = −α̂1 and using this in (39) gives



1
2

(ad η1)2α0 + (ad η1)α1 =
(−1

0
)

[1, 1, 0, 0, 0, 0] +
(−5/4

0
)

[1, 0, 1, 0, 0, 0]

+
(3/8

0
)

[0, 1, 1, 0, 0, 0] +
(1/4

0
)

[0, 1, 0, 1, 0, 0]

+
( 1
−1
)

[0, 1, 0, 0, 1, 0] +
(−3/8

0
)

[0, 0, 1, 1, 0, 0]

+
(15/8
−5/8

)
[0, 0, 1, 0, 1, 0] +

(−9/8
0
)

[0, 0, 1, 0, 0, 1]

+
( 0

3/2
)

[0, 0, 0, 1, 1, 0] +
( 0
−1/4

)
[0, 0, 0, 1, 0, 1]

+
(0

1
)

[0, 0, 0, 0, 1, 1].

Continuing the computations following Algorithm B we obtain
α̂1 = 0;

α̂2 = (−a(1)
01 a(1)

10 + a(1)
01 a(2)

10 ,−a(1)
01 a(2)

10 + a(2)
01 a(2)

10 )T ;

α̂3 = (0, a(1)
10 a(2)

02 a(2)
10 + 2a(2)

02 (a(2)
10 )2)T ;

α̂4 = ((a(1)
01 )2a(1)

10 a(2)
10 + a(1)

01 a(1)
10 a(2)

01 a(2)
10 − 2(a(1)

01 )2(a(2)
10 )2,

− a(1)
01 a(1)

10 a(2)
01 a(2)

10 + 2(a(1)
01 )2(a(2)

10 )2 − a(2)
01 (a(2)

10 )2)T .

so, the normal form up to level 4 is
α̂ = α̂0 + α̂1 + α̂2 + α̂3 + α̂4.

The above agrees with (12). However, the normal forms differ in the seventh order.



Algorithm B allows parallel computations of terms of normal forms.

Proposition 2
If for some κ ∈ N`0 we have 〈L(κ), λ〉 = 0, then the coefficient ακ in the normal form
α̂ is computed using only the monomials αµaµ such that aµ divides aκ, i.e. µj ≤ κj
for all j = 1, 2, . . . , `.

[θ̂, φ̂] =
∑

µ∈ω

∑
ν∈ω1

(〈L(µ), φν〉θµ − 〈L(ν), θµ〉φν) aµ+ν .

ξ̂ =
∑s−1

k=0

∑bm−k
s c

i=1
1
i! (ad η̂s )i α̂k (ad η̂s )i α̂k : Ak → Ak+is (that is, ”from level k to

level k + is”.



Thus, in order to compute a coefficient ακ of the normal form we first look for
the set of µ involving in the computation of ακ by means of Algorithm B.
Denote this set ωκ. The set ωκ can be found using the following procedure:
Let |κ| = s. Set p = 1, τκ(s) = {κ}.
While p < s do
set τκ(s − p) = ∅;
for µ = (µ1, . . . , µ`) :
for i = 1, . . . , `: if µi − i ≥ 0 then τκ(s − p) = τκ(k) ∪ {µ};
set p = p + 1.

The output of the procedure are the sets τκ(i), i = 1, . . . , s − 1, where τκ(i) is
a subset of elements of level i . Then

τκ = ∪s−1
i=1 τκ(i)

is the subset of N`0 needed in the computation of ακ and in order to compute
the ακ one just uses Algorithm B where the Lie brackets are computed with ω1
and ω2 in (33) being subsets of τκ.
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