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Introduction

A pathological object
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Introduction
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x ∈ R↦ W (x) =
+∞

∑
n=0

λ
n

cos (π bn x) , 0 < λ < 1 , λb > 1

Continuous everywhere, while being nowhere differentiable
I
,
II
.

I
Karl Weierstrass. “Über continuirliche Funktionen eines reellen Arguments, die für keinen

Werth des letzteren einen bestimmten Differential quotienten besitzen”. In: Journal für die reine
und angewandte Mathematik 79 (1875), pp. 29–31.

II
Godfrey Harold Hardy. “Weierstrass’s Non-Differentiable Function”. In: Transactions of the

American Mathematical Society 17.3 (1916), pp. 301–325.
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Introduction

Minkowski Dimension
III

,
IV

,
V
,
VI

:

DW = 2 +
lnλ

ln b
= 2 − lnb

1

λ

III
James L. Kaplan, John Mallet-Paret, and James A. Yorke. “The Lyapunov dimension of a

nowhere differentiable attracting torus”. In: Ergodic Theory and Dynamical Systems 4 (1984),
pp. 261–281.

IV
Feliks Przytycki and Mariusz Urbański. “On the Hausdorff dimension of some fractal sets”.

In: Studia Mathematica 93.2 (1989), pp. 155–186.
V

Tian-You Hu and Ka-Sing Lau. “Fractal Dimensions and Singularities of the Weierstrass
Type Functions”. In: Transactions of the American Mathematical Society 335.2 (1993),
pp. 649–665.

VI
Claire David. “Bypassing dynamical systems: A simple way to get the box-counting

dimension of the graph of the Weierstrass function”. In: Proceedings of the International
Geometry Center 11.2 (2018), pp. 1–16. url:
https://journals.onaft.edu.ua/index.php/geometry/article/view/1028.
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Introduction

An open problem
VII

:

↝ Is DW a Complex Dimension?

↝ What are the Complex Dimensions?

VII
Michel L. Lapidus, Goran Radunović, and Darko Žubrinić. Fractal Zeta Functions and

Fractal Drums: Higher-Dimensional Theory of Complex Dimensions. Springer Monographs in
Mathematics. Springer, New York, 2017, pp. xl+655.
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The Theory of Complex Dimensions:
VIII

,
IX

,
X

,
XI

,
XII

A natural and intuitive way to characterize fractal strings or drums,

in relation with their intrinsic vibrational properties.

VIII
Michel L. Lapidus and Machiel van Frankenhuijsen. Fractal Geometry and Number Theory:

Complex Dimensions of Fractal Strings and Zeros of Zeta Functions. Birkhäuser Boston, Inc.,
Boston, MA, 2000, pp. xii+268.

IX
Michel L. Lapidus and Machiel van Frankenhuijsen. Fractal Geometry, Complex Dimensions

and Zeta Functions: Geometry and Spectra of Fractal Strings. Springer Monographs in
Mathematics. Springer, New York, second revised and enlarged edition (of the 2006 edition),
2013, pp. xxvi+567.

X
Michel L. Lapidus, Goran Radunović, and Darko Žubrinić. Fractal Zeta Functions and

Fractal Drums: Higher-Dimensional Theory of Complex Dimensions. Springer Monographs in
Mathematics. Springer, New York, 2017, pp. xl+655.

XI
Michel L. Lapidus, Goran Radunović, and Darko Žubrinić. “Distance and tube zeta functions

of fractals and arbitrary compact sets”. In: Advances in Mathematics 307 (2017),
pp. 1215–1267.

XII
Michel L. Lapidus, Goran Radunović, and Darko Žubrinić. “Fractal tube formulas for

compact sets and relative fractal drums: Oscillations, complex dimensions and fractality”. In:
Journal of Fractal Geometry. Mathematics of Fractals and Related Topics 5.1 (2018), pp. 1–119.
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This means:

studying the oscillations of a small neighborhood of the boundary,

where points are located within an epsilon distance from any edge.
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Difficulty

When nonlinear and noncontractive IFS are involved

Tubular neighborhoods can only be determined

for the prefractal approximations.
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Introduction

The main question:

Can we pass to the limit?
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Geometric Framework

I. The Geometric Framework
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Geometric Framework

We hereafter place ourselves in the Euclidean plane of dimension 2, referred
to a direct orthonormal frame. The usual Cartesian coordinates are (x , y). The
horizontal and vertical axes will be respectively refered to as (x ′x) and (y ′y).
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Geometric Framework

Notation

In the following, λ and Nb are two real numbers such that:

0 < λ < 1 , Nb ∈ N⋆ and λNb > 1 ⋅

We consider the Weierstrass function W , defined, for any real number x , by

W (x) =
+∞

∑
n=0

λ
n

cos (2πN
n
b x) ⋅

Associated graph: the Weierstrass Curve.

Due to the one-periodicity of the W function, we restrict our study to the inter-
val [0, 1[.
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Minkowski (or box-counting) Dimension

DW = 2 +
lnλ

ln Nb
, equal to its Hausdorff dimension

XIII
,
XIV

,
XV

,
XVI

XIII
James L. Kaplan, John Mallet-Paret, and James A. Yorke. “The Lyapunov dimension of a

nowhere differentiable attracting torus”. In: Ergodic Theory and Dynamical Systems 4 (1984),
pp. 261–281.

XIV
Krzysztof Barańsky, Balázs Bárány, and Julia Romanowska. “On the dimension of the graph

of the classical Weierstrass function”. In: Advances in Mathematics 265 (2014), pp. 791–800.
XV

Weixiao Shen. “Hausdorff dimension of the graphs of the classical Weierstrass functions”.
In: Mathematische Zeitschrift 289 (1-2 2018), pp. 223–266.

XVI
Gerhard Keller. “A simpler proof for the dimension of the graph of the classical Weierstrass

function”. In: Annales de l’Institut Henri Poincaré – Probabilités et Statistiques 53.1 (2017),
pp. 169–181.
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Geometric Framework

The Weierstrass Curve as a Cyclic Curve

In the sequel, we identify the points

(0,W (0)) and (1,W (1)) = (1,W (0)) ⋅

1
x

-1

1

y

Remark

The above convention makes sense, in so far as the points (0,W (0))
and (1,W (1)) have the same vertical coordinate, in addition to the periodic
properties of the W function.
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Geometric Framework

Property (Symmetry with respect to the vertical line x =
1

2
)

Since, for any x ∈ [0, 1]:

W (1 − x) =
+∞

∑
n=0

λ
n

cos (2πN
n
b − 2πN

n
b x) = W (x)

the Weierstrass Curve is symmetric with respect to the vertical straight

line x =
1

2
.

1

2
1

x

-2

1

2

W
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Geometric Framework

Proposition (Nonlinear and Noncontractive Iterated Function
System (IFS))

We approximate the restriction ΓW to [0, 1[×R, of the Weierstrass Curve, by a
sequence of finite graphs, built through an iterative process, by using the
nonlinear iterated function system (IFS) of the family of C

∞
maps from R2

to R2
denoted by

TW = {T0,⋯,TNb−1} ,

where, for 0 ≤ i ≤ Nb − 1 and any point (x , y) of R2
,

Ti(x , y) = (x + i

Nb
, λ y + cos (2π (x + i

Nb
))) ⋅

Property (Attractor of the IFS)

The Weierstrass Curve is the attractor of the IFS TW : ΓW =

Nb−1

⋃
i=0

Ti(ΓW ).
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Geometric Framework

Fixed Points

For any integer i belonging to {0,⋯,Nb − 1}, we denote by:

Pi = (xi , yi) = ( i

Nb − 1
,

1

1 − λ
cos ( 2π i

Nb − 1
))

the fixed point of the map Ti .
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Geometric Framework

Sets of vertices, Prefractals

We set: V0 = {P0,⋯,PNb−1}, and, for any m ∈ N⋆: Vm =

Nb−1

⋃
i=0

Ti (Vm−1).

For m ∈ N, the set of points Vm, where two consecutive points are linked, is an ori-

ented graph (according to increasing abscissa): the mth
-order W -prefractal ΓWm

.
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Geometric Framework

The Weierstrass IFD

We call Weierstrass Iterated Fractal Drums (IFD) the sequence of prefractal
graphs which converge to the Weierstrass Curve.
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Geometric Framework

Adjacent Vertices, Edge Relation

For any natural integer m, the prefractal graph ΓWm
is equipped with an edge

relation ∼
m

: two vertices X and Y of ΓWm
, i.e. two points belonging to Vm, will

be said to be adjacent (i.e., neighboring or junction points) if and only if the line
segment [X ,Y ] is an edge of ΓWm

; we then write X ∼
m

Y . This edge relation

depends on m, which means that points adjacent in Vm might not remain adjacent
in Vm+1.

X ∈Vm ⋂Vm+1

X ∼
m

Y

Points inVm+1\Vm
Y ∈Vm ⋂Vm+1

Y ∼
m

X

Z ∈Vm+1\Vm+1

Z ∼
m+1

T

T ∈Vm+1\Vm+1

T ∼
m+1

Z
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Geometric Framework

Property

For any natural integer m, we have that

i. Vm ⊂ Vm+1 ⋅

ii. #Vm = (Nb − 1) N
m
b + 1 ⋅

X ∈Vm ⋂Vm+1

X ∼
m

Y

Points inVm+1\Vm
Y ∈Vm ⋂Vm+1

Y ∼
m

X

Z ∈Vm+1\Vm+1

Z ∼
m+1

T

T ∈Vm+1\Vm+1

T ∼
m+1

Z
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Geometric Framework

iii. The prefractal graph ΓWm
has exactly (Nb − 1) N

m
b edges.

iv. The consecutive vertices of the prefractal graph ΓWm
are the vertices of N

m
b

simple polygons Pm,k with Nb sides. For m ∈ N, the junction point
between two consecutive polygons is the point

( (Nb − 1) k
(Nb − 1)Nm

b

,W ( (Nb − 1) k
(Nb − 1)Nm

b

)) , 1 ≤ k ≤ N
m
b − 1 ⋅

The total number of junction points is thus N
m
b − 1.

For instance, in the case Nb = 3, one gets triangles.
In the sequel, we will denote by P0 the initial polygon, i.e. the one whose
vertices are the fixed points of the maps Ti , 0 ≤ i ≤ Nb − 1.

1
x

-1

1

y

1
x

-1

1

y

The polygons, in the case where λ =
1

2
, and Nb = 3.
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Geometric Framework

The polygons, in the case where λ =
1

2
, and Nb = 7.
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(Sorbonne Université - LJLL) Polyhedral Neighborhoods vs Tubular Neighborhoods 25 / 119



26/119

Geometric Framework

The prefractal graphs ΓW0 , ΓW1 , ΓW2 , ΓW3 , in the case where λ =
1

2
, and Nb = 3.
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Geometric Framework

The prefractal graphs ΓW0 , ΓW1 , ΓW2 , ΓW3 , in the case where λ =
1

2
, and Nb = 4.
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Geometric Framework

The prefractal graphs ΓW0 , ΓW1 , ΓW2 , ΓW3 , in the case where λ =
1

2
, and Nb = 7.
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Geometric Framework

Vertices of the Prefractals, Elementary Lengths,
and Heights

Given m ∈ N, we denote by (Mj ,m)0≤j≤(Nb−1)Nm
b −1 the set of vertices of the

prefractal graph ΓWm
. One thus has, for any integer j in {0,⋯, (Nb − 1)Nm

b − 1}:

Mj,m = ( j

(Nb − 1)Nm
b

,W ( j

(Nb − 1)Nm
b

)) ⋅

We also introduce, for 0 ≤ j ≤ (Nb − 1)Nm
b − 2:

i. the elementary horizontal lengths:

Lm =
1

(Nb − 1)Nm
b

hj ,j+1,m

j

L m

M j,m

M j+1,m

lj ,j+1,m

(Sorbonne Université - LJLL) Polyhedral Neighborhoods vs Tubular Neighborhoods 29 / 119



30/119

Geometric Framework

ii. the elementary lengths:

`j,j+1,m = d (Mj,m,Mj+1,m) =
√
L2
m + h2

j,j+1,m

iii. the elementary heights:

hj,j+1,m =

»»»»»»»»
W ( j + 1

(Nb − 1)Nm
b

) −W ( j

(Nb − 1)Nm
b

)
»»»»»»»»

hj ,j+1,m

j

L m

M j,m

M j+1,m

lj ,j+1,m
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Geometric Framework

iv. the geometric angles:

θj−1,j,m = ̂((y ′y), (Mj−1,mMj,m)) , θj,j+1,m = ̂((y ′y), (Mj,mMj+1,m)) ,

which yield the value of the geometric angle between consecutive edges
[Mj−1,m Mj,m,Mj,m Mj+1,m]:

θj−1,j,m + θj,j+1,m = arctan
Lm

∣hj−1,j,m∣
+ arctan

Lm

∣hj,j+1,m∣
⋅
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Geometric Framework

Property (Scaling Properties of the Weierstrass Function, and
Consequences)

Since, for any real number x

W (x) =
+∞

∑
n=0

λ
n

cos (2πN
n
b x)

one also has

W (Nb x) =
+∞

∑
n=0

λ
n

cos (2πN
n+1
b x) = 1

λ

+∞

∑
n=1

λ
n

cos (2πN
n
b x) = 1

λ
{W (x) − cos (2π x)}

which yield, for any strictly positive integer m, and any j in {0,⋯,#Vm}:

W ( j
(Nb − 1)Nm

b
) = λW ( j

(Nb − 1)Nm−1
b

) + cos( 2π j
(Nb − 1)Nm−1

b

)
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Geometric Framework

By induction, one obtains that

W ( j
(Nb − 1)Nm

b
) = λm

W ( j
(Nb − 1)) +

m−1

∑
k=0

λ
k

cos( 2πNk
b j

(Nb − 1)Nm
b
) ⋅
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Geometric Framework

A Consequence of the Symmetry with respect to the Vertical

Line x =
1

2

For any strictly positive integer m and any j in {0,⋯,#Vm}, we have that

W ( j

(Nb − 1)Nm
b

) = W ((Nb − 1)Nm
b − j

(Nb − 1)Nm
b

)

which means that the points

((Nb − 1)Nm
b − j

(Nb − 1)Nm
b

,W ((Nb − 1)Nm
b − j

(Nb − 1)Nm
b

)) and ( j
(Nb − 1)Nm

b
,W ( j

(Nb − 1)Nm
b

))

are symmetric with respect to the vertical line x =
1

2
.
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M j-1,m

M j-1+p,m

M(Nb-1)Nb
m
- j+1,m

M(Nb-1)Nb
m
- j+1-p,m

x =
1

2

1
x

-1

1

y

Figure: Symmetric points with respect to the vertical line x =
1

2
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Property

i. For 0 ≤ j ≤
(Nb − 1)

2
: W ( j + 1

Nb − 1
) −W ( j

Nb − 1
) ≤ 0.

ii. For
(Nb − 1)

2
≤ j ≤ Nb − 1: W ( j + 1

Nb − 1
) −W ( j

Nb − 1
) ≥ 0.

j + 1

Nb - 1

j

Nb - 1

1
x

-1

1

y

j + 1

Nb - 1

j

Nb - 1

1
x

-1

1

y
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Geometric Framework

Property

Given a strictly positive integer m:

i. For any j in {0,⋯,#Vm}, the point

( j

(Nb − 1)Nm
b

,W ( j

(Nb − 1)Nm
b

))

is the image of the point

( j

(Nb − 1)Nm−1
b

− i,W ( j

(Nb − 1)Nm−1
b

− i)) = ( j − i (Nb − 1)Nm−1
b

(Nb − 1)Nm−1
b

,W ( j − i (Nb − 1)Nm−1
b

(Nb − 1)Nm−1
b

))

by the map Ti , 0 ≤ i ≤ Nb − 1.
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As a consequence, the j th vertex of the polygon Pm,k , 0 ≤ k ≤ N
m
b − 1,

0 ≤ j ≤ Nb − 1, i.e. the point:

((Nb − 1) k + j

(Nb − 1)Nm
b

,W ((Nb − 1) k + j

(Nb − 1)Nm
b

))

is the image of the point

⎛
⎜
⎝
(Nb − 1) (k − i (Nb − 1)Nm−1

b ) + j

(Nb − 1)Nm−1
b

,W
⎛
⎜
⎝
(Nb − 1) (k − i (Nb − 1)Nm−1

b ) + j

(Nb − 1)Nm−1
b

⎞
⎟
⎠
⎞
⎟
⎠

i.e. is the the j th vertex of the polygon Pm−1,k−i (Nb−1)Nm−1
b

.
There is thus an exact correspondence between vertices of the polygons
at consecutive steps m − 1, m.

ii. Given j in {0,⋯,Nb − 2}, and k in {0,⋯,N
m
b − 1} :

sign (W ( k (Nb − 1) + j + 1

(Nb − 1)Nm
b

) −W ( k (Nb − 1) + j

(Nb − 1)Nm
b

)) = sign (W ( j + 1

Nb − 1
) −W ( j

Nb − 1
)) ⋅
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Bounding Result: Upper and Lower Bounds
for the Elementary Heights

For any strictly positive integer m, and any j in {0,⋯, (Nb − 1)Nm
b }, we have

that

Cinf λ
m

Í ÒÒÒÑÒÒÒ Ï
Nm (DW −2)

b

≤

»»»»»»»»
W ( j + 1

(Nb − 1)Nm
b

) −W ( j
(Nb − 1)Nm

b
)
»»»»»»»»
≤ Csup λ

m

Í ÒÒÒÑÒÒÒ Ï
Nm (DW −2)

b

L m

M j,m

M j+1,m

j

(Nb - 1) Nb
m

j + 1

(Nb - 1) Nb
m
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where

Cinf = (Nb − 1)2−DW min
0≤j≤Nb−1

»»»»»»»»
W ( j + 1

Nb − 1
) −W ( j

Nb − 1
)
»»»»»»»»

and

Csup = (Nb − 1)2−DW ( max
0≤j≤Nb−1

»»»»»»»»
W ( j + 1

Nb − 1
) −W ( j

Nb − 1
)
»»»»»»»»
+

2π

(Nb − 1) (λNb − 1) ) ⋅

These constants depend on the initial polygon P0.
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Theorem: Sharp Local Discrete Reverse Hölder
Properties of the Weierstrass Function

For any natural integer m, and any pair of real numbers (x , x ′) such that:

x =
(Nb − 1) k + j

(Nb − 1)Nm
b

= ((Nb − 1) k + j) Lm , x
′
=

(Nb − 1) k + j + `

(Nb − 1)Nm
b

= ((Nb − 1) k + j + `) Lm

where 0 ≤ k ≤ Nb − 1
m − 1, and

i. if the integer Nb is odd,

0 ≤ j <
Nb − 1

2
and 0 < j + ` ≤

Nb − 1

2

or
Nb − 1

2
≤ j < Nb − 1 and

Nb − 1

2
< j + ` ≤ Nb − 1 ;

ii. if the integer Nb is even,

0 ≤ j <
Nb

2
and 0 < j + ` ≤

Nb

2

or
Nb

2
+ 1 ≤ j < Nb − 1 and

Nb

2
+ 1 < j + ` ≤ Nb − 1 ,
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Left - side vertices Right - side vertices

Bottom vertex

x

y

Left - side vertices

Right - side vertices

Bottom vertex

1
x

-1

1

y

This means that the points (x,W (x)) and (x ′,W (x ′)) are vertices of the poly-
gon Pm,k both located on the left-side of the polygon, or on the right-side.
Then, one has the following reverse-Hölder inequality, with sharp Hölder expo-

nent −
lnλ

ln Nb
= 2 −DW ,

Cinf
»»»»»x
′
− x»»»»»

2−DW
≤
»»»»»W (x ′) −W (x)»»»»» ⋅
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Geometric Framework

Corollary

One may now write, for any m ∈ N⋆, and 0 ≤ j ≤ (Nb − 1)Nm
b − 1:

i. for the elementary heights:

hj−1,j,m = L
2−DW
m O (1)

ii. for the elementary quotients:

hj−1,j,m

Lm
= L

1−DW
m O (1)

where:

0 < Cinf ≤ O (1) ≤ Csup <∞⋅
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Polyhedral Measure

II. Polyhedral Measure
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Polyhedral Measure

mth
Cohomology Infinitesimal

Given any m ∈ N, we will call m
th

cohomology infinitesimal the number

ε
m
m =

1

Nb − 1

1

Nm
b

→
m→∞

0 ⋅

Note that this m
th

cohomology infinitesimal is the one naturally associated to the
scaling relation of W .

Mj,m

Mj+1,m

hj ,j+1,m

ϵm
m
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Polyhedral Measure

Polygonal Sets
For any m ∈ N, the consecutive vertices of the prefractal graph ΓWm

are the vertices
of N

m
b simple polygons Pm,k with Nb sides.

We now introduce the polygonal sets

Pm = {Pm,k , 0 ≤ k ≤ N
m
b − 1} and Qm = {Qm,k , 0 ≤ k ≤ N

m
b − 2} ⋅

P0 P2

P1

polygon P1,0

polygon P1,1

polygon P1,2

polygon Q1,2polygon Q1,1

Initial polygon 

1
x

-1

1

y
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Polyhedral Measure

Notation

For any m ∈ N, we denote by:

ii . X ∈ Pm (resp., X ∈ Qm) a vertex of a polygon Pm,k ,
with 0 ≤ k ≤ N

m
b − 1 (resp., a vertex of a polygon Qm,k ,

with 1 ≤ k ≤ N
m
b − 2).

ii . Pm⋃Qm the reunion of the polygonal sets Pm and Qm, which consists in
the set of all the vertices of the polygons Pm,k , with 0 ≤ k ≤ N

m
b − 1, along

with the vertices of the polygons Qm,k , with 1 ≤ k ≤ N
m
b − 2. In

particular, X ∈ Pm⋃Qm simply denotes a vertex in Pm or Qm.

iii . Pm⋂Qm the intersection of the polygonal sets Pm and Qm, which
consists in the set of all the vertices of both a polygon Pm,k ,

with 0 ≤ k ≤ N
m
b − 1, and a polygon Qm,k ′ , with 1 ≤

′
k ≤ N

m
b − 2.
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Power of a Vertex

Given m ∈ N⋆, a vertex X of ΓWm is said:

i. of power one relative to the polygonal family Pm if X belongs to (or is a
vertex of) one and only one Nb-gon Pm,j , for 0 ≤ j ≤ N

m
b − 1;

ii. of power
1

2
relative to the polygonal family Pm if X is a common vertex

to two consecutive Nb-gons Pm,j and Pm,j+1, for 0 ≤ j ≤ N
m
b − 2;

iii. of power zero reative to the polygonal family Pm if X does not belong to
(or is not a vertex of) any Nb-gon Pm,j , for 0 ≤ j ≤ N

m
b − 1.
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Polyhedral Measure

Similarly, given m ∈ N, a vertex X of ΓWm is said:

i. of power one relative to the polygonal family Qm if X belongs to (or is a
vertex of) one and only one Nb-gon Pm,j , for 0 ≤ j ≤ N

m
b − 2;

ii. of power
1

2
relative to the polygonal family Pm if X is a common vertex

to two consecutive Nb-gons Qm,j and Qm,j+1, for 0 ≤ j ≤ N
m
b − 3;

iii. of power zero reative to the polygonal family Pm if X does not belong to
(or is not a vertex of) any Nb-gon Qm,j , for 0 ≤ j ≤ N

m
b − 2.
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Polyhedral Measure

Sequence of Domains Delimited by the W IFD
We introduce the sequence of domains delimited by the Weierstrass IFD as the
sequence (D (ΓWm))m ∈N of open, connected polygonal sets (Pm ∪Qm)m ∈N,
where, for each m ∈ N, Pm and Qm respectively denote the polygonal sets in-
troduced just above.

D (ΓW2
) and D (ΓW3

), for λ =
1

2
and Nb = 3.
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Polyhedral Measure

D (ΓW5
), for λ =

1

2
and Nb = 3.
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Polyhedral Measure

Domain Delimited by the Weierstrass IFD

We call domain, delimited by the Weierstrass IFD, the set, which is equal to the
following limit,

D (ΓW ) = lim
m→∞

D (ΓWm) ,

where the convergence is interpreted in the sense of the Hausdorff metric on R2
.

In fact, we have that

D (ΓW ) = ΓW ⋅
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Polyhedral Measure

Notation (Lebesgue Measure (on R2
))

In the sequel, we denote by µL the Lebesgue measure on R2
.

Notation
For any m ∈ N, and any vertex X of Vm, we set:

µ
L (X ,Pm,Qm) =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

1

Nb
p (X ,Pm) ∑

0≤j≤Nm
b −1,X vertex of Pm,j

µL (Pm,j ) , if X ∉ Qm ,

1

Nb
p (X ,Qm) ∑

1≤j≤Nm
b −2,X vertex of Pm,j

µL (Qm,j ) , if X ∉ Pm ,

1

2Nb

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎩

p (X ,Pm) ∑
0 ≤ j ≤ N

m
b − 1,

X vertex of Pm,j

µL (Pm,j ) + p (X ,Qm) ∑
1 ≤ j ≤ N

m
b − 2,

X vertex of Qm,j

µL (Qm,j )

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎬⎪⎪⎪⎪⎪⎪⎪⎪⎭

,

if X ∈ Pm ∩Qm ⋅
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Polyhedral Measure

Property

Given a continuous function u on [0, 1] × [mW ,MW ], we have that, for any m ∈ N,
and any vertex X of Vm:

»»»»»µ
L (X ,Pm,Qm) u (X)»»»»» ≤ µ

L (X ,Pm,Qm) ( max
[0,1]×[mW ,MW ]

∣u∣) ≲ N−(3−DW )m
b ⋅

Consequently,we have that

ε
m (DW −2)
m

»»»»»µ
L (X ,Pm,Qm) u (X)»»»»» ≲ ε

−m
m ⋅

Since the sequence
⎛
⎜
⎝

∑
X ∈Pm ⋃Qm

ε
−m
m

⎞
⎟
⎠

m ∈N

is a positive and increasing sequence

(the number of vertices involved increases as m increases), this ensures the existence
of the finite limit

lim
m→∞

ε
m (DW −2)
m ∑

X ∈Pm ⋃Qm

µ
L (X ,Pm,Qm) u (X) ⋅
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Polyhedral Measure

Theorem: Polyhedral Measure on the Weierstrass
IFD ∼ I

We introduce the polyhedral measure on the Weierstrass IFD, denoted by µ, such
that for any continuous function u on the Weierstrass Curve,

∫
ΓW

u dµ = lim
m→∞

ε
m (DW −2)
m ∑

X ∈Pm ⋃Qm

µ
L (X ,Pm,Qm) u (X) , (⋆)

which can also be understood in the following way,

∫
ΓW

u dµ = ∫
D(ΓW )

u dµ ⋅
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Polyhedral Measure

Theorem: Polyhedral Measure on the Weierstrass
IFD ∼ II

The polyhedral measure µ is well defined, positive, as well as a bounded,
nonzero, Borel measure on D (ΓW ). The associated total mass is given by

µ (D (ΓW )) = lim
m→∞

ε
m (DW −2)
m ∑

X ∈Pm⋃Qm

µ
L (X ,Pm,Qm) , (⋆⋆)

and satisfies the following estimate:

µ (D (ΓW )) ≤ 2

Nb
(Nb − 1)2

Csup ⋅ (⋆ ⋆ ⋆)

Furthermore, the support of µ coincides with the entire curve:

suppµ = D (ΓW ) = ΓW ⋅
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Polyhedral Measure

Theorem - II

In addition, µ is the weak limit as m →∞ of the following discrete measures (or
Dirac Combs), given, for each m ∈ N, by

µm = ε
m (DW −2)
m ∑

X ∈Pm⋃Qm

µ
L (X ,Pm,Qm) δX ,

where ε denotes the cohomology infinitesimal, and δX the Dirac measure concen-
trated at X .
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Polyhedral and Tubular Neighborhoods

III. Polyhedral and Tubular Neighborhoods
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Polyhedral and Tubular Neighborhoods

Classical Approach
Aim: Following

XVII
,

XVIII
and

XIX

↓

one requires fractal tube formulae for the IFD

i.e., the area of a two-sided ε-neighborhood of each prefractal approximation.

XVII
Michel L. Lapidus, Goran Radunović, and Darko Žubrinić. Fractal Zeta Functions and

Fractal Drums: Higher-Dimensional Theory of Complex Dimensions. Springer Monographs in
Mathematics. Springer, New York, 2017, pp. xl+655.
XVIII

Michel L. Lapidus, Goran Radunović, and Darko Žubrinić. “Fractal tube formulas for
compact sets and relative fractal drums: Oscillations, complex dimensions and fractality”. In:
Journal of Fractal Geometry. Mathematics of Fractals and Related Topics 5.1 (2018), pp. 1–119.

XIX
Michel L. Lapidus. “An overview of complex fractal dimensions: From fractal strings to

fractal drums, and back”. In: Horizons of Fractal Geometry and Complex Dimensions. Vol. 731.
Contemporary Mathematics. Amer. Math. Soc., Providence, RI, 2019, pp. 143–265.
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Polyhedral and Tubular Neighborhoods

The fractal tube formula is expected to consist of an expansion of the form,

in the case of simple Complex Dimensions,

∑
α real part of a Complex Dimension

ε
2−α

Gα (lnNb
(1
ε )) , (⋆)

(apart from ponctual terms) where, for any real part α of a Complex Dimension, Gα
denotes a continuous and one-periodic function.
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Polyhedral and Tubular Neighborhoods

Instead of Tubular Neighborhoods

We can also consider

Polyhedral Neighborhoods
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Polyhedral and Tubular Neighborhoods

Polyhedral Neighborhood
We consider the sequence of domains delimited by the Weierstrass IFD as the
sequence (D (ΓWm))m ∈N of open, connected polygonal sets (Pm ∪Qm)m ∈N.

Given ∈ N, D (ΓWm
) is the m

th
polyhedral neighborhood (of the Weierstrass Curve).

D (ΓW4
), for λ =

1

2
and Nb = 3.
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Exact Expression
In the case where Nb = 3, given m ∈ N⋆, the volume (or two-dimensional Lebesgue

measure) of the m
th

-polygonal neighborhood D (ΓWm
) is given by

Vm(εmm) = µL (D (ΓWm
)) = ε

m
m

2
(W (0) +W (2 ε

m
m) − 2 W (εmm)) ⋅

(Sorbonne Université - LJLL) Polyhedral Neighborhoods vs Tubular Neighborhoods 63 / 119



64/119
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Proof
i . For 1 ≤ j ≤ #Vm − 2,

µL (Qm,j ) =
ε
m
m

2
(2 W ( j + 1

(Nb − 1)Nm
b

) −W ( j

(Nb − 1)Nm
b

) −W ( j + 2

(Nb − 1)Nm
b

)) ⋅

ii . For 1 ≤ j ≤ #Vm − 1,

µL (Pm,j ) =
ε
m
m

2
(W ( j − 1

(Nb − 1)Nm
b

) +W ( j + 1

(Nb − 1)Nm
b

) − 2 W ( j

(Nb − 1)Nm
b

)) ⋅

iii . We then have that

Vm(εmm) =
#Vm−3

∑
j=1

(µL (Pm,j ) + µL (Qm,j )) + µL (Pm,Nm
b
) = ε

m
m

2
(1 +W (2 ε

m
m) − 2 W (εmm)) ,

since, thanks to the symmetry with respect to the vertical line x =
1

2
,

W ( (Nb − 1)Nm
b − 1

(Nb − 1)Nm
b

) = W ( 1

(Nb − 1)Nm
b

) and W ( (Nb − 1)Nm
b − 2

(Nb − 1)Nm
b

) = W ( 2

(Nb − 1)Nm
b

) ⋅
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Comparison with Tubular Neighborhoods

In the sequel, we denote by d the Euclidean distance.

Given a natural integer m, we introduce:

i. The (m, εm
m)-Upper Neighborhood:

D
+ (ΓWm

, ε
m
m) = {M = (x , y) ∈ R2

, y ≥ W (x) and d (M, ΓWm
) ≤ εmm} ⋅

ii. The (m, εm
m)-Lower Neighborhood:

D
− (ΓWm

, ε
m
m) = {M = (x , y) ∈ R2

, y ≤ W (x) and d (M, ΓWm
) ≤ εmm} ⋅
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The (m, εmm)-upper and lower Neighborhoods are then obtained by means of
rectangles and wedges.

ϵ ϵ

ϵ ϵϵ

ϵ

wedges

ϵ

ϵ

ϵ

ϵ

ϵ

wedges

ϵ

ϵ ϵ

ϵ ϵ

ϵ ϵ

The (1, ε
1
1)-Upper and Lower Neighborhoods, in the case where λ =

1

2
and Nb = 3.
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Polyhedral and Tubular Neighborhoods

The (1, ε
1
1)-Upper Neighborhood, in the case where λ =

1

2
and Nb = 3.

ϵϵ

ϵ ϵ

θ j-1, j,m
θ j-1, j,m

M j-1,m M j+1,m

M j,m
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Polyhedral and Tubular Neighborhoods

Two overlapping rectangles, in the case where λ =
1

2
and Nb = 3.

b j-1, j,m

θ j, j+1,m

ϵ

θ j-1, j,m + θ j, j+1,m

Overlapping

rectangles

ϵ

Parallelogram of

height ϵ, and

basis b j-1, j,m

θ j-1, j,m

b


j-1, j,m

Extra triangles

M j-1,m M j+1,m

M j,m

(Sorbonne Université - LJLL) Polyhedral Neighborhoods vs Tubular Neighborhoods 68 / 119



69/119
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The (1, ε
1
1), (2, ε

2
2) and (3, ε

3
3)-Neighborhoods, in the case where λ =

1

2
and Nb = 3.
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The (1, ε
1
1), (2, ε

2
2) and (3, ε

3
3)-Neighborhoods, in the case where λ =

1

2
and Nb = 4.
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Polyhedral and Tubular Neighborhoods

Proposition: (m, εm
m)-Upper Neighborhood

Given a strictly positive integer m, the (m, εmm)-Upper Neighborhood is con-
stituted of:

i. (Nb − 1)Nm
b overlapping rectangles, each of length `j−1,j,m, 1 ≤ j ≤ N

m
b − 1,

and height ε
m
m.

The area that is counted twice corresponds to parallelograms, of height ε
m
m

and basis ε
m
m cotan (π − θj−1,j,m − θj,j+1,m).

Since one deals here with an upper neighborhood, one also has to substract
the areas of the extra outer lower triangles.

ii. N
m
b (1 + 2 [Nb − 3

4
]) − 1 upper wedges. The number of wedges is

determined by the shape of the initial polygon P0, as well by the existence of
reentrant angles.

iii. Two extreme wedges, each of area

1

2
π (εmm)

2
⋅
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extremewedges

The extreme wedges, in the case where Nb = 3.
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Proposition: (m, εm
m)-Lower Neighborhood

In the same way, given a strictly positive integer m, the (m, εmm)-Lower Neigh-
borhood is thus constituted of:

i. (Nb − 1)Nm
b overlapping rectangles, each of length `j−1,j,m, 1 ≤ j ≤ N

m
b − 1,

and height ε
m
m.

The area that is thus counted twice again corresponds to parallelograms, of
height ε

m
m and basis ε

m
m cotan (π − θj−1,j,m − θj,j+1,m).

Since one deals here with a lower neighborhood, one has this time to
substract the areas of the upper extra outer upper triangles.

ii. N
m
b (Nb − 2 [Nb − 3

4
]) − 1 lower wedges.

The number of lower wedges is determined by the shape of the initial
polygon P0, as well as by the existence of reentrant angles.
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Polyhedral and Tubular Neighborhoods

The (m, εmm)-upper and lower Neighborhoods are then obtained by means of
rectangles and wedges.

ϵ ϵ

ϵ ϵϵ

ϵ

wedges

ϵ

ϵ

ϵ

ϵ

ϵ

wedges

ϵ

ϵ ϵ

ϵ ϵ

ϵ ϵ

The (1, ε
1
1)-Upper and Lower Neighborhoods, in the case where λ =

1

2
and Nb = 3.
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The (1, ε
1
1)-Upper Neighborhood, in the case where λ =

1

2
and Nb = 3.

ϵϵ

ϵ ϵ

θ j-1, j,m
θ j-1, j,m

M j-1,m M j+1,m

M j,m
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Polyhedral and Tubular Neighborhoods

Two overlapping rectangles, in the case where λ =
1

2
and Nb = 3.

b j-1, j,m

θ j, j+1,m

ϵ

θ j-1, j,m + θ j, j+1,m

Overlapping

rectangles

ϵ

Parallelogram of

height ϵ, and

basis b j-1, j,m

θ j-1, j,m

b


j-1, j,m

Extra triangles

M j-1,m M j+1,m

M j,m
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The (1, ε
1
1), (2, ε

2
2) and (3, ε

3
3)-Neighborhoods, in the case where λ =

1

2
and Nb = 3.
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The (1, ε
1
1), (2, ε

2
2) and (3, ε

3
3)-Neighborhoods, in the case where λ =

1

2
and Nb = 4.
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Proposition: (m, εm
m)-Upper Neighborhood

Given a strictly positive integer m, the (m, εmm)-Upper Neighborhood is con-
stituted of:

i. (Nb − 1)Nm
b overlapping rectangles, each of length `j−1,j,m, 1 ≤ j ≤ N

m
b − 1,

and height ε
m
m.

The area that is counted twice corresponds to parallelograms, of height ε
m
m

and basis ε
m
m cotan (π − θj−1,j,m − θj,j+1,m).

Since one deals here with an upper neighborhood, one also has to substract
the areas of the extra outer lower triangles.

ii. N
m
b (1 + 2 [Nb − 3

4
]) − 1 upper wedges. The number of wedges is

determined by the shape of the initial polygon P0, as well by the existence of
reentrant angles.

iii. Two extreme wedges, each of area

1

2
π (εmm)

2
⋅
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extremewedges

The extreme wedges, in the case where Nb = 3.
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Proposition: (m, εm
m)-Lower Neighborhood

In the same way, given a strictly positive integer m, the (m, εmm)-Lower Neigh-
borhood is thus constituted of:

i. (Nb − 1)Nm
b overlapping rectangles, each of length `j−1,j,m, 1 ≤ j ≤ N

m
b − 1,

and height ε
m
m.

The area that is thus counted twice again corresponds to parallelograms, of
height ε

m
m and basis ε

m
m cotan (π − θj−1,j,m − θj,j+1,m).

Since one deals here with a lower neighborhood, one has this time to
substract the areas of the upper extra outer upper triangles.

ii. N
m
b (Nb − 2 [Nb − 3

4
]) − 1 lower wedges.

The number of lower wedges is determined by the shape of the initial
polygon P0, as well as by the existence of reentrant angles.
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Theorem: The Nested Neighborhoods

i . Given m ∈ N, there exists m1 ∈ N such that, for all k ≥ m1, the polyhe-
dral neighborhood D (ΓWm) contains, but for a finite number of wedges,

the (m + k, ε
m+k
m+k) tubular neighborhood D

tube (ΓWm+k , ε
m+k
m+k).

ii . Given m ∈ N, there exists m2 ∈ N such that, for all k ≥ m2, the tubu-

lar (m, εmm)-neighborhood D
tube (ΓWm , ε

m
m) contains the polyhedral neighbor-

hood D (ΓWm+k ).
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D (ΓW2
) (in red), and D

tube (ΓW7
, ε

7
7), in the case where λ =

1

2
and Nb = 3.
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The polygonal neigborhood D (ΓW3
), in the case where λ =

1

2
and Nb = 3.

D (ΓW3
) (in red), and D

tube (ΓW7
, ε

7
7), in the case where λ =

1

2
and Nb = 3.
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D (ΓW5
) and D

tube (ΓW3
, ε

3
3), in the case where λ =

1

2
and Nb = 3.
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Proof

i . At a given step m ≥ 0, between two adjacent vertices Mi,m and Mi+1,m of Vm,

there are Nb − 1 consecutive vertices of Vm+1 \ Vm, (Mj+1,m+1,⋯,Mj+Nb−2,m+1) ∈ V
Nb−1
m+1

such that

Mi,m = Mj,m+1 and Mi+1,m = Mj+Nb,m+1 ⋅

We dispose of an exact correspondance between vertices of the polygons at the
step m + 1, and at the initial step m = 0. Since reentrant angles occur when Nb ≥ 7,
we can restrict ourselves to the cases Nb ≤ 6 (in the case of reentrant angles, the
following arguments can be suitably adjusted). We then simply have to consider

the [Nb − 2

2
] vertices Mj+k,m+1, with 1 ≤ k ≤ [Nb − 2

2
] (the same arguments holds

for the vertices Mj+Nb−k,m+1). Given j in {0,⋯,Nb − 2} and k in {0,⋯,N
m+1
b − 1},

we have that

sgn (W ( k (Nb − 1) + j + 1

(Nb − 1)Nm+1
b

) −W ( k (Nb − 1) + j

(Nb − 1)Nm+1
b

)) = sgn (W ( j + 1

Nb − 1
) −W ( j

Nb − 1
)) ,
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i.e., equivalently,

sgn (W ((k (Nb − 1) + j + 1)Lm+1) −W ((k (Nb − 1) + j)Lm+1)) = sgn (W ( j + 1

Nb − 1
) −W ( j

Nb − 1
)) ⋅

Due to the symmetry of the initial polygon P0 (or, equivalently, of the initial

prefractal graph ΓW0
) with respect to the vertical line x =

1

2
(see Property 1), this

means that we can restrict ourselves to the case when

W (j Lm+1) ≥ W ((j + 1) Lm+1) ≥⋯ ≥ W ((j + [Nb − 2

2
]) Lm+1) ,

and

W (j Lm+1)ÍÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÑÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÏ
W (i Lm)

≥ W ((j + Nb) Lm+1)ÍÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÑÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒ Ï
W ((i + 1) Lm)

,

since

Mi,m = Mj,m+1 and Mi+1,m = Mj+Nb,m+1 ⋅
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We then deduce, by triangle inequality, for 1 ≤ k ≤ [Nb − 2

2
], that

»»»»»»»»»»»»»»»

W ((j + k) Lm+1) −W (j Lm+1)ÍÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÑÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÏ
W (i Lm)

»»»»»»»»»»»»»»»

≤ [Nb − 2

2
] Csup L

2−DW

m+1 ⋅

Since

Lm+1 =
Lm
Nb

,

we then obtain that

»»»»»»»»»»»»»»»

W ((j + k) Lm+1) −W (j Lm+1)ÍÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÑÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÏ
W (i Lm)

»»»»»»»»»»»»»»»

≤ [Nb − 2

2
] N

DW −2
b Csup L

2−DW
m ⋅
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Recall now that

Cinf = (Nb − 1)2−DW min
0≤j≤Nb−1

»»»»»»»»
W ( j + 1

Nb − 1
) −W ( j

Nb − 1
)
»»»»»»»»
,

and

Csup = (Nb − 1)2−DW ( max
0≤j≤Nb−1

»»»»»»»»
W ( j + 1

Nb − 1
) −W ( j

Nb − 1
)
»»»»»»»»
+

2π

(Nb − 1) (λNb − 1) ) ⋅

Here, we have that

W ( j

Nb − 1
) = 1

1 − λ
cos

2π j

Nb − 1
⋅

This ensures that

»»»»»»»»
W ( j + 1

Nb − 1
) −W ( j

Nb − 1
)
»»»»»»»»
≤

2π

Nb − 1

1

1 − λ
⋅
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We can check numerically that

[Nb − 2

2
] N

DW −2
b Csup ≤ Cinf ,

from which we immediately deduce that for, 1 ≤ k ≤ [Nb − 2

2
],

»»»»»»»»»»»»»»»

W ((j + k) Lm+1) −W (j Lm+1)ÍÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÑÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÏ
W (i Lm)

»»»»»»»»»»»»»»»

≤ ∣W ((i + 1) Lm) −W (i Lm)∣ ⋅
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For 1 ≤ k ≤ [Nb − 2

2
], the vertices Mj+k,m+1 are then strictly between the ver-

tices Mi,m and Mi+1,m. As is explained previously, we can show, in a similar way,

that for 1 ≤ k ≤ [Nb − 2

2
], the vertices Mj+Nb−k,m+1 are also strictly between the

vertices Mi,m and Mi+1,m.
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By induction, we then obtain that, given four consecutive adjacent vertices Mi,m, Mi+1,m, Mi+3,m

and Mi+4,m of Vm, with 1 ≤ i ≤ #Vm − 5 and k ∈ N, the vertices of Vm+k \ Vm

located between Mi,m and Mi+4,m can be all comprised in the simple and convex
polygon Mi,mMi+1,mMi+3,mMi+4,m, which coincides with the union of two consecu-
tive polygons Pm,j and Qm,j . Thus, there exists m0 ∈ N such that, for all k ≥ m0,

the (m + k, ε
m+k
m+k)-neighborhood

D (ΓWm+k
, ε

m+k
m+k) = {M = (x , y) ∈ R2

, d (M, ΓWm+k
) ≤ εm+km+k} ,

from which we remove the wedges associated to the vertices Mi,m, Mi+1,m, Mi+3,m

and Mi+4,m (see
XX

), can be totally included in the polygon Mi,mMi+1,mMi+3,mMi+4,m.
Hence, there exists m1 ∈ N such that, for all k ≥ m1, the (m, εmm)-neighborhood

but for a finite number of wedges, the (m + k , ε
m+k
m+k)-neighborhood

D (ΓWm+k
, ε

m+k
m+k), can be totally included in the polygonal domain D (ΓWm

).

XX
Claire David and Michel L. Lapidus. Weierstrass fractal drums - I - A glimpse of complex

dimensions. 2022.
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ii . This latter result has been obtained in
XXI

. It comes from the fact that, in the
sense of the Hausdorff metric on R2

,

lim
m→∞

D (ΓWm
) = ΓW ⋅

XXI
Claire David and Michel L. Lapidus. Iterated fractal drums ∼ Some New Perspectives:

Polyhedral Measures, Atomic Decompositions and Morse Theory. 2022.
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IV. Zeta Functions

∼

Complex Dimensions
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Zeta functions ?

They represent the trace of a differential operator at a complex order s

↓

Poles: Maximal Orders of Differentiation

↓

Dimensions
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Difficulty:
In our present context, when it comes to obtain the associated fractal tube zeta

function, we cannot, as in the case of an arbitrary subset of R2
(see

XXII
, Def. 2.2.8,

p. 118), directly use an integral formula of the form

ζ̃m(s) = ∫
ε
m
m

0
t
s−2

Vm(t)
dt
t ,

since the tube formulas can only be expressed in an explicit way at a coho-
mology infinitesimal.

However, we can use Riemann sums, for the following nonuniform partition of the
interval [0, ε

m
m], where k →∞,

[0, ε
m
m] = [0, ε

mk
mk]⋃

⎧⎪⎪⎪⎨⎪⎪⎪⎩

m+k+p=m+k

⋃
m+k+p=mk−2

[εm+k+p+1
m+k+p+1, ε

m+k+p
m+k+p]

⎫⎪⎪⎪⎬⎪⎪⎪⎭
⋃ [εm+km+k , ε

m
m] ⋅

XXII
Michel L. Lapidus, Goran Radunović, and Darko Žubrinić. Fractal Zeta Functions and

Fractal Drums: Higher-Dimensional Theory of Complex Dimensions. Springer Monographs in
Mathematics. Springer, New York, 2017, pp. xl+655.
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Theorem: mth
-Prefractal Effective Polyhedral Zeta

Function ∼ I

Given m ∈ N, we introduce the m
th

-prefractal effective polyhedral zeta function ζ̃m,
such that, for admissible values of the complex number s,

ζ̃
e
m(s) = ∫

ε
m
m

0
t
s−3

Ṽm(t) dt =
ε
m (s−1)
m

2 (s − 1) + ∫
ε
m
m

0
t
s−3 (W (2 t) − 2 W (t)) dt ,

where Ṽm is the volume extension function associated with Vm.

The associated sequence (ζ̃em)m∈N satisfies the following recurrence relation, for
values of the integer m sufficiently large,

ζ̃
e
m+1(s) = N3−s

b ζ̃
e
m(s) + 1

2
(1 −λ) N3−s

b
ε

m (s−1)
m

s − 1
+N3−s

b ∫
ε
m
m

0
ts−2 1

2 Nb
Re (e i 4π t

− 2 e i 2π t) dt ⋅
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Theorem: mth
-Prefractal Effective Polyhedral Zeta

Function ∼ II

This ensures the existence of the limit fractal zeta function, i.e., the fractal zeta
function associated with the Weierstrass Curve ΓW , given by

ζ̃
e
W = lim

m→∞
ζ̃
e
m ,

along with the existence of an integer m0 ∈ N such that the poles of ζ̃W are the
same as the poles of the fractal zeta function ζ̃

e
m0

.
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Proof

i . For sufficienly large values of m ∈ N, i.e., m ≥ m0, for some suitable inte-
ger m0 ∈ N,

ζ̃
e
m+1(s) = ∫

ε
m+1
m+1

0
t
s−3

Ṽm+1(t) dt ⋅

Let us now note that

Ṽm (εmm) =
ε
m
m

2
(W (0) +W (2 ε

m
m) − 2 W (εmm)) ,

and

Ṽm+1 (εm+1
m+1) =

ε
m+1
m+1

2
(W (0) +W (2 ε

m+1
m+1) − 2 W (εm+1

m+1)) ⋅
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Since

ε
m+1
m+1 =

1

Nb
ε
m
m

and thanks to the scaling relation satisfied by W ,

W (εm+1
m+1) = W ( 1

Nb
ε
m
m) = λW (εmm) + cos (2π ε

m
m) ,

and

W (2 ε
m+1
m+1) = W ( 2

Nb
ε
m
m) = λW (2 ε

m
m) + cos (4π ε

m
m) ,

we can deduce that

Ṽm+1(εm+1
m+1) =

λ

Nb
Vm(Nb ε

m+1
m+1) +

1

Nb

Nb ε
m+1
m+1

2
(1 − λ) + Nb ε

m+1
m+1

2
(cos (4πNb ε

m+1
m+1) − 2 cos (2πNb ε

m+1
m+1)) ⋅
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ii . We now assume that (Em) holds for all m ≥ m0.

a. We denote by P (ζ̃em) ⊂ C the set of poles of the zeta function ζ̃
e
m, and

by P (ζ̃em0
) ⊂ C the set of poles of the zeta function ζ̃

e
m0

.

We can note that

P (ζ̃em0
) ⊂ {s ∈ C , Re(s) < 2} ⊂ {s ∈ C , Re(s) < 3} ⋅

We set

U
+
= (C \ P (ζ̃em0

)) ∩ {s ∈ C , Re(s) < 1} ⋅

(resp., U
−
= (C \ P (ζ̃em0

)) ∩ {s ∈ C , 1 < Re(s) < 3})
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Then, the series

∑
m≥m0

(N3−s
b ζ̃m(s) + 1

2
(1 − λ) N

3−s
b

ε
m (s−1)
m

s − 1
+N

3−s
b ∫

ε
m
m

0
t
s−2 1

2Nb
Re (e i 4π t

− 2 e
i 2π t) dt)

is (locally) normally convergent, and, hence, uniformly convergent on

U
+
= (C \ P (ζ̃m0

)) ∩ {s ∈ C , Re(s) < 1}

(resp., on U
−
= (C \ P (ζ̃m0

)) ∩ {s ∈ C , 1 < Re(s) < 3})
This ensures the existence of the limit fractal zeta function, i.e., the fractal
zeta function associated with the Weierstrass Curve ΓW , given by

ζ̃
e
W (s) = lim

m→∞
ζ̃
e
m(s) = ∑

m≥m0

N
3−s
b ζ̃m(s)+ 1

2
(1 − λ) N

3−s
b

ε
m (s−1)
m

s − 1
+N

3−s
b ∫

ε
m
m

0
t
s−2 1

2Nb
Re (e i 4π t

− 2 e
i 2π t) dt ⋅
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More precisely, if P
1(C) denotes the Riemann sphere, we can show that, for the

chordal metric, defined, for all (z1, z2) ∈ (P1(C))2
by

∥z1, z2∥ =
∣z1 − z2∣√

1 + ∣z2
1 ∣

√
1 + ∣z2

2 ∣
,

we have, thanks to the uniform convergence of the series,

lim
m→∞

∥ζ̃em, ζ̃eW ∥ = 0 ⋅

Indeed, for any η > 0, we can choose m0 ∈ N⋆ such that, for all s ∈ P
1(C), we

have that

∣ζ̃em(s) − ζ̃eW (s)∣ ≤ η ,

and, hence, for all s ∈ P
1(C),

∥ζ̃em(s), ζ̃W (s)∥ ≤ ∣ζ̃em(s) − ζ̃eW (s)∣ ≤ η ⋅
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The sum of this series, i.e., the (uniform) limit fractal zeta function ζ̃
e
W , is

holomorphic on U
+

(resp., on U
−

). We can then deduce that, for all m ≥ m0, the
zeta function ζ̃

e
m is meromorphic on C \ {s ∈ C , Re(s) = 1}, and that its poles

in C \ {s ∈ C , Re(s) = 1} are exactly the same as the poles of ζ̃
e
m0

. Moreover,

the results obtained in
XXIII

for the sequence of tube zeta functions associated with
the Weierstrass IFD, which admit a meromorphic continuation to all of C, obviously
hold for the sequence of polyhedral tube zeta functions: hence, ζ̃

e
m is meromorphic

on C, and its poles belong to P (ζ̃em0
). Consequently, the poles of ζ̃

e
m are simple,

and are the same as the poles of ζ̃
e
m0

:

P (ζ̃e
m) = P (ζ̃e

m0
) ⋅

XXIII
Claire David and Michel L. Lapidus. Fractal Complex Dimensions and Cohomology of the

Weierstrass Curve. 2022.
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b. Let us now denote by P (ζ̃eW ) ⊂ C the set of poles of the limit fractal zeta

function ζ̃
e
W . By applying Theorem 3.14 given page 82 in

XXIV
, we then deduce that

lim
m→∞

P (ζ̃em) = P (ζ̃eW ) ⋅
Since, for all m ≥ m0,

P (ζ̃em) = P (ζ̃em0
) ,

this ensures that

P (ζ̃eW ) = P (ζ̃em0
) ⋅

Hence, as desired, the poles of the limit of the fractal zeta function ζ̃
e
W are simple,

and are the same as the poles of ζ̃
e
m0

.

XXIV
Michel L. Lapidus and Machiel van Frankenhuijsen. Fractal Geometry, Complex Dimensions

and Zeta Functions: Geometry and Spectra of Fractal Strings. Springer Monographs in
Mathematics. Springer, New York, second revised and enlarged edition (of the 2006 edition),
2013, pp. xxvi+567.
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From the mth
-Prefractal Polyhedral Zeta Function,

to the mth
Tube Zeta Function

Given m ∈ N, the Lebesgue measure of the tubularneighborhood D (ΓWm
, ε

m
m)

can be connected to the Lebesgue measure of the (m, εmm) polygonal neighbor-
hood Vm (εmm) by means of the following relation,

Vm (εmm) = V
tube
m (εmm) +Rm where V

tube
m (εmm) = µL (D (ΓWm

)) ,
and where the sequence of remainders (Rm)m≥m0

(locally) uniformly converges to 0.

This ensures, for the associated fractal zeta function

s ↦ ∫
ε
m
m

0
t
s−3

Rm(t) dt ,

that

lim
m→∞

∫
ε
m
m

0
t
s−3

Rm(t) dt = 0 ⋅
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Theorem: Fractal Tube Formula for The Weierstrass
IFD
Given m ∈ N sufficiently large, the tubular volume VW (εmm), or two-dimensional

Lebesgue measure of the ε
m
m-neighborhood of the m

th
prefractal graph ΓWm

,

D (ΓWm
, ε

m
m) = {M = (x , y) ∈ R2

, d (M, ΓWm(εmm)) ≤ ε
m
m} ,

is given by

VW (εmm) = ∑
`∈Z, k ∈N

f`,k,Rectangles (εmm)2−DW +k (2−DW )−i ` p

+ ∑
`∈Z, k ∈N

(f`,k,wedges,1 (εmm)3−i ` p
+ f`,k,wedges,2 (εmm)1+2 k−i ` p

+ f`,k,wedges,3 (εmm) 5 + 2 k − i ` p)

+ ∑
`∈Z, k ∈N

f`,k,triangles, parallelograms (εmm)2−i ` p
+ π (εmm)2

−
π (εmm)4

2
,

where the notation f`,k,Rectangles, f`,k,wedges,`, 1 ≤ ` ≤ 3, and f`,k,triangles, parallelograms,
respectively account for the coefficients associated to the sums corresponding to
the contribution of the rectangles, wedges, triangles and parallelograms.
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Theorem: Local and Global Effective Tube Zeta
Function for the Weierstrass IFD

The global tube zeta function associated to the Weierstrass IFDs, ζ̃W , defined by

analogy with the work in
XXV

, admits a meromorphic continuation to all of C, and
is given, for any complex number s, by:

ζ̃
e
W (s) = lim

m→∞
ζ̃

e
m,W (s) ,

XXV
Michel L. Lapidus, Goran Radunović, and Darko Žubrinić. Fractal Zeta Functions and

Fractal Drums: Higher-Dimensional Theory of Complex Dimensions. Springer Monographs in
Mathematics. Springer, New York, 2017, pp. xl+655.
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where, for all m ∈ N sufficiently large, the local tube zeta function ζ̃m,W is given,
for any complex number s, by

ζ̃
e
m,W (s) = ∑

`∈Z, k ∈N
f`,k,Rectangles

(εmm)s−DW +k (2−DW )−i ` p

s −DW + k (2 −DW ) − i ` p

+ ∑
`∈Z, k ∈N

{f`,k,wedges,1

(εmm)s+1−i ` p

s + 1 − i ` p
+ f`,k,wedges,2

(εmm)s+2 k−1−i ` p

s + 2 k − 1 − i ` p
+ f`,k,wedges,3

(εmm) s + 3 + 2 k − i ` p

s + 3 + 2 k − i ` p
}

+ ∑
`∈Z, k ∈N

f`,k,triangles, parallelograms

(εmm)s−1−i ` p

s − 1 − i ` p
+
π (εmm)s

s −
π (εmm)s+2

4 (s + 2) ⋅
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Corollary: Local and Global Distance Zeta Function
for the Weierstrass Iterated Fractal Drums

According to the functional equation given in
XXVI

(Th. 2.2.1., page 112), the global
effective distance zeta function ζ

e
W is given, for any complex number s, by:

ζ
e
W (s) = lim

m→∞
ζ

e
m,W (s) ,

where, for all m ∈ N sufficiently large, the local distance zeta function ζ
e
m,W is

given, for any complex number s, by

ζ
e
m,W (s) = (εmm)s−2

Vm(εmm) + (2 − s) ζ̃Wm (s) ∀ s ∈ C ⋅

For all m ∈ N sufficiently large, the distance zeta function ζ
e
m,W admits a mero-

morphic continuation to all of C, given by the last equality just above.

XXVI
Michel L. Lapidus, Goran Radunović, and Darko Žubrinić. Fractal Zeta Functions and

Fractal Drums: Higher-Dimensional Theory of Complex Dimensions. Springer Monographs in
Mathematics. Springer, New York, 2017, pp. xl+655.
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Remark

The Complex Dimensions – i.e., the poles of ζ
e
m,W , or, equivalently, of ζ̃

e
m,W

are independent of the choice of the parameter ε
m
m

(see the general theory developed in
XXVII

)

This comes from the fact that, for 0 < ε
m
m,1 < ε

m
m,2,

ζ
e
m,W ,εm

m,1
− ζe

m,W ,εm
m,2

is an entire function.

XXVII
Michel L. Lapidus, Goran Radunović, and Darko Žubrinić. Fractal Zeta Functions and

Fractal Drums: Higher-Dimensional Theory of Complex Dimensions. Springer Monographs in
Mathematics. Springer, New York, 2017, pp. xl+655.

(Sorbonne Université - LJLL) Polyhedral Neighborhoods vs Tubular Neighborhoods 111 / 119



112/119

Zeta Functions - Complex Dimensions

Theorem: Complex Dimensions of the W IFD
XXIX

The possible Complex Dimensions of the Weierstrass IFD are all simple, and
given as follows:

DW − k (2 − DW ) + i ` p , k ∈ N , ` ∈ Z ,

1 − 2 k + i ` p , k ∈ N , ` ∈ Z, along with − 2 and 0 ⋅

The one-periodic functions (with respect to lnNb (ε
m
m)−1

), resp. associated to the
values DW − k (2 − DW ), k ∈ N, are nonconstant. In addition, all of their Fourier
coefficients are nonzero, which implies that there are infinitely many Complex
Dimensions that are nonreal, including those with maximal real part DW , which

are the principal Complex Dimensions (see
XXVIII

). They give rise to geometric
oscillations with the largest amplitude, in the fractal tube formula.

XXVIII
Michel L. Lapidus, Goran Radunović, and Darko Žubrinić. Fractal Zeta Functions and

Fractal Drums: Higher-Dimensional Theory of Complex Dimensions. Springer Monographs in
Mathematics. Springer, New York, 2017, pp. xl+655.
XXIX

Claire David and Michel L. Lapidus. Weierstrass fractal drums - I - A glimpse of complex
dimensions. 2022.
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Complex Dimensions of the Weierstrass IFD

The nonzero Complex Dimensions are periodically distributed (with the same pe-

riod p =
2π

ln Nb
, the oscillatory period of ΓW ) along countably many vertical lines,

with abscissae DW − k (2 −DW ) and 1 − 2 k , where k ∈ N is arbitrary. In addi-
tion, 0 and −2 are Complex Dimensions of ΓW .
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Theorem: Complex Dimensions of the Weierstrass
Curve

The Complex Dimensions of The Weierstrass Curve are all simple, and given as
follows:

DW − k (2 − DW ) + i ` p , with k ∈ N , ` ∈ Z ,

1 − 2 k + i ` p , with k ∈ N , ` ∈ Z, along with 0 and 1 ⋅
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Proof

i . First, there exists an integer m0 ∈ N such that the poles of the limit effec-
tive fractal zeta function ζ̃

e
W , i.e., the fractal zeta function associated with the

Weierstrass Curve ΓW , are the same as the poles of the fractal zeta function ζ̃
e
m0

.

ii . Second, we have showed the poles of the limit fractal zeta function ζ̃
e
W are also

the same as the poles of the tube fractal zeta function ζ̃
e,tube
m0

.

iii . We then dispose of the results obtained in
XXX

, which give the values of the

poles of the tube fractal zeta function ζ̃
e,tube
m0

.

XXX
Claire David and Michel L. Lapidus. Weierstrass fractal drums - I - A glimpse of complex

dimensions. 2022.
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Connections with Real Life

↝ Nature produces many fractal-like structures. Until now, the tools of fractal
geometry have been little used to model the morphogenesis of these living forms.

↝ The acellular model organism Physarum polycephalum grows in a network
and fractal branched way.

(a) P. polycephalum plasmodium. (b) Vein network.
© A. Dussutour & C. Oettmeier.
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↝ The change of shape in Physarum polycephalum corresponds to a change of
fractal (complex) dimensions (undergoing work with A. Dussutour, H. Henni,
C. Godin).

↝ Just as in our mathematical theory.

↝ What is the growth law?

↝ Can we find the underlying variational principle?
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Forthcoming: The Magnitude

↝ Counterpart of the (topological) Euler characteristic
XXXI

.

↝ New method for numerically determining the Complex Dimensions of a

fractal
XXXII

.

↝ Also connected to the polyhedral measure.

XXXI
Tom Leinster. “The magnitude of metric spaces”. In: Documenta Mathematica 18 (2013),

pp. 857–905. issn: 1431-0635.
XXXII

Claire David and Michel L. Lapidus. Fractal Complex Dimensions ∼ A Bridge to Magnitude.
2023.
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