Polyhedral Neighborhoods vs Tubular Neighborhoods:

New Insights for the Fractal Zeta Functions

Joint work with Michel L. Lapidus

Sorbonne Université - Laboratoire Jacques-Louis Lions
(in. SCIENCES
SORBONNE
UNIVERSITÉ

1 Introduction

2 Geometric Framework

3 Polyhedral Measure

4 Polyhedral and Tubular Neighborhoods

5 Zeta Functions - Complex Dimensions

6 Connections with Real Life

Introduction

A pathological object

Continuous everywhere, while being nowhere differentiable',".
'Karl Weierstrass. "Über continuirliche Funktionen eines reellen Arguments, die für keinen Werth des letzteren einen bestimmten Differential quotienten besitzen". In: Journal für die reine und angewandte Mathematik 79 (1875), pp. 29-31.
"Godfrey Harold Hardy. "Weierstrass's Non-Differentiable Function". In: Transactions of the American Mathematical Society 17.3 (1916), pp. 301-325.

Minkowski Dimension ${ }^{\text {III }}$, $\mathrm{V}, \mathrm{V}^{\mathrm{VI}}$:

$$
D_{\mathscr{W}}=2+\frac{\ln \lambda}{\ln \boldsymbol{b}}=2-\ln _{\boldsymbol{b}} \frac{1}{\lambda}
$$

[^0]
An open problem ${ }^{\text {VII: }}$

\leadsto Is $D_{\mathscr{W}}$ a Complex Dimension?
\leadsto What are the Complex Dimensions?

[^1]
The Theory of Complex Dimensions:
 VIII IX X XI XII

A natural and intuitive way to characterize fractal strings or drums,
in relation with their intrinsic vibrational properties.

[^2]
This means:

studying the oscillations of a small neighborhood of the boundary, where points are located within an epsilon distance from any edge.

Difficulty

When nonlinear and noncontractive IFS are involved

Tubular neighborhoods can only be determined
for the prefractal approximations.

The main question:

Can we pass to the limit?

I. The Geometric Framework

We hereafter place ourselves in the Euclidean plane of dimension 2, referred to a direct orthonormal frame. The usual Cartesian coordinates are (x, y). The horizontal and vertical axes will be respectively refered to as $\left(x^{\prime} x\right)$ and $\left(y^{\prime} y\right)$.

Notation

In the following, λ and N_{b} are two real numbers such that:

$$
0<\lambda<1 \quad, \quad N_{b} \in \mathbb{N}^{\star} \text { and } \lambda N_{b}>1 .
$$

We consider the Weierstrass function \mathscr{W}, defined, for any real number x, by

$$
\mathscr{W}(x)=\sum_{n=0}^{+\infty} \lambda^{n} \cos \left(2 \pi N_{b}^{n} x\right) .
$$

Associated graph: the Weierstrass Curve.

Due to the one-periodicity of the \mathscr{W} function, we restrict our study to the interval $[0,1[$.

Minkowski (or box-counting) Dimension

$$
\boldsymbol{D}_{\mathscr{W}}=2+\frac{\ln \boldsymbol{\lambda}}{\ln \boldsymbol{N}_{\boldsymbol{b}}} \text {, equal to its Hausdorff dimension }{ }^{\text {XIII, XIV } \mathrm{XV}, \mathrm{XVI}^{\prime}}
$$

```
    XIII James L. Kaplan, John Mallet-Paret, and James A. Yorke. "The Lyapunov dimension of a
nowhere differentiable attracting torus". In: Ergodic Theory and Dynamical Systems 4 (1984),
pp. 261-281.
    XIV Krzysztof Barańsky, Balázs Bárány, and Julia Romanowska. "On the dimension of the graph
of the classical Weierstrass function". In: Advances in Mathematics 265 (2014), pp. 791-800.
    *V Weixiao Shen. "Hausdorff dimension of the graphs of the classical Weierstrass functions".
In: Mathematische Zeitschrift 289 (1-2 2018), pp. 223-266.
    XVI Gerhard Keller. "A simpler proof for the dimension of the graph of the classical Weierstrass
function". In: Annales de l'Institut Henri Poincaré - Probabilités et Statistiques 53.1 (2017),
pp. 169-181.
```


The Weierstrass Curve as a Cyclic Curve

In the sequel, we identify the points

$$
(0, \mathscr{W}(0)) \quad \text { and } \quad(1, \mathscr{W}(1))=(1, \mathscr{W}(0)) \cdot
$$

Remark

The above convention makes sense, in so far as the points ($0, \mathscr{W}(0)$) and ($1, \mathscr{W}(1)$) have the same vertical coordinate, in addition to the periodic properties of the \mathscr{W} function.

Property (Symmetry with respect to the vertical line $x=\frac{1}{2}$)

Since, for any $x \in[0,1]$:

$$
\mathscr{W}(1-x)=\sum_{n=0}^{+\infty} \lambda^{n} \cos \left(2 \pi N_{b}^{n}-2 \pi N_{b}^{n} x\right)=\mathscr{W}(x)
$$

the Weierstrass Curve is symmetric with respect to the vertical straight line $x=\frac{1}{2}$.

Proposition (Nonlinear and Noncontractive Iterated Function System (IFS))

We approximate the restriction $\Gamma_{\mathscr{W}}$ to $[0,1[\times \mathbb{R}$, of the Weierstrass Curve, by a sequence of finite graphs, built through an iterative process, by using the nonlinear iterated function system (IFS) of the family of C^{∞} maps from \mathbb{R}^{2} to \mathbb{R}^{2} denoted by

$$
\mathscr{T}_{\mathscr{W}}=\left\{T_{0}, \cdots, T_{N_{b}-1}\right\}
$$

where, for $0 \leq i \leq N_{b}-1$ and any point (x, y) of \mathbb{R}^{2},

$$
T_{i}(x, y)=\left(\frac{x+i}{N_{b}}, \lambda y+\cos \left(2 \pi\left(\frac{x+i}{N_{b}}\right)\right)\right) .
$$

Property (Attractor of the IFS)

The Weierstrass Curve is the attractor of the IFS $\mathscr{T}_{\mathscr{W}}: \Gamma_{\mathscr{W}}=\bigcup_{i=0}^{N_{b}-1} T_{i}\left(\Gamma_{\mathscr{W}}\right)$.

Fixed Points

For any integer i belonging to $\left\{0, \cdots, N_{b}-1\right\}$, we denote by:

$$
P_{i}=\left(x_{i}, y_{i}\right)=\left(\frac{i}{N_{b}-1}, \frac{1}{1-\lambda} \cos \left(\frac{2 \pi i}{N_{b}-1}\right)\right)
$$

the fixed point of the map $\boldsymbol{T}_{\boldsymbol{i}}$.

Sets of vertices, Prefractals

We set: $\boldsymbol{V}_{0}=\left\{\boldsymbol{P}_{0}, \cdots, \boldsymbol{P}_{\boldsymbol{N}_{b}-1}\right\}$, and, for any $m \in \mathbb{N}^{\star}: V_{m}=\bigcup_{i=0}^{N_{b}-1} T_{i}\left(\boldsymbol{V}_{m-1}\right)$.
For $m \in \mathbb{N}$, the set of points V_{m}, where two consecutive points are linked, is an oriented graph (according to increasing abscissa): the $\boldsymbol{m}^{\text {th }}$-order \mathscr{W}-prefractal $\Gamma_{\mathscr{W}_{m}}$.

The Weierstrass IFD

We call Weierstrass Iterated Fractal Drums (IFD) the sequence of prefractal graphs which converge to the Weierstrass Curve.

Adjacent Vertices, Edge Relation

For any natural integer m, the prefractal graph $\Gamma_{\mathscr{W}_{m}}$ is equipped with an edge relation $\underset{m}{\sim}$: two vertices X and Y of $\Gamma_{\mathscr{W}_{m}}$, i.e. two points belonging to V_{m}, will be said to be adjacent (i.e., neighboring or junction points) if and only if the line segment $[X, Y]$ is an edge of $\Gamma_{\mathscr{W}_{m}}$; we then write $X \sim Y$. This edge relation depends on \boldsymbol{m}, which means that points adjacent in V_{m} might not remain adjacent in V_{m+1}.

Property

For any natural integer m, we have that
i. $V_{m} \subset V_{m+1}$.
ii. $\# V_{m}=\left(N_{b}-1\right) N_{b}^{m}+1$.

iii. The prefractal graph $\Gamma_{\mathscr{W}_{m}}$ has exactly $\left(N_{b}-1\right) N_{b}^{m}$ edges.
iv. The consecutive vertices of the prefractal graph $\Gamma_{\mathscr{W}_{m}}$ are the vertices of N_{b}^{m} simple polygons $\mathscr{P}_{m, k}$ with N_{b} sides. For $m \in \mathbb{N}$, the junction point between two consecutive polygons is the point

$$
\left(\frac{\left(N_{b}-1\right) k}{\left(N_{b}-1\right) N_{b}^{m}}, \mathscr{W}\left(\frac{\left(N_{b}-1\right) k}{\left(N_{b}-1\right) N_{b}^{m}}\right)\right) \quad, \quad 1 \leq k \leq N_{b}^{m}-1
$$

The total number of junction points is thus $N_{b}^{m}-1$.
For instance, in the case $N_{b}=3$, one gets triangles.
In the sequel, we will denote by \mathscr{P}_{0} the initial polygon, i.e. the one whose vertices are the fixed points of the maps $T_{i}, 0 \leq i \leq N_{b}-1$.

The polygons, in the case where $\lambda=\frac{1}{2}$, and $N_{b}=3$.

The polygons, in the case where $\lambda=\frac{1}{2}$, and $N_{b}=7$.

$\boldsymbol{m}=0$

$\boldsymbol{m}=1$

The prefractal graphs $\Gamma_{\mathscr{W}_{0}}, \Gamma_{W_{1}}, \Gamma_{\mathscr{W}_{2}}, \Gamma_{\mathscr{W}_{3}}$, in the case where $\lambda=\frac{1}{2}$, and $N_{b}=3$.

The prefractal graphs $\Gamma_{\mathscr{W}_{0}}, \Gamma_{\mathscr{W}_{1}}, \Gamma_{\mathscr{W}_{2}}, \Gamma_{\mathscr{W}_{3}}$, in the case where $\lambda=\frac{1}{2}$, and $N_{b}=4$.

The prefractal graphs $\Gamma_{\mathscr{W}_{0}}, \Gamma_{\mathscr{W}_{1}}, \Gamma_{\mathscr{W}_{2}}, \Gamma_{\mathscr{W}_{3}}$, in the case where $\lambda=\frac{1}{2}$, and $N_{b}=7$.

Vertices of the Prefractals, Elementary Lengths, and Heights

Given $m \in \mathbb{N}$, we denote by $\left(\boldsymbol{M}_{\boldsymbol{j}, \boldsymbol{m}}\right)_{0 \leq j \leq\left(\boldsymbol{N}_{b}-1\right) \boldsymbol{N}_{b}^{m}-1}$ the set of vertices of the prefractal graph $\Gamma_{\mathscr{W}_{m}}$. One thus has, for any integer j in $\left\{0, \cdots,\left(N_{b}-1\right) N_{b}^{m}-1\right\}$:

$$
M_{j, m}=\left(\frac{j}{\left(N_{b}-1\right) N_{b}^{m}}, \mathscr{W}\left(\frac{j}{\left(N_{b}-1\right) N_{b}^{m}}\right)\right)
$$

We also introduce, for $0 \leq j \leq\left(N_{b}-1\right) N_{b}^{m}-2$:
i the elementary horizontal lengths:

$$
L_{m}=\frac{1}{\left(N_{b}-1\right) N_{b}^{m}}
$$

ii. the elementary lengths:

$$
\ell_{j, j+1, m}=d\left(M_{j, m}, M_{j+1, m}\right)=\sqrt{L_{m}^{2}+h_{j, j+1, m}^{2}}
$$

iii. the elementary heights:

$$
h_{j, j+1, m}=\left|\mathscr{W}\left(\frac{j+1}{\left(N_{b}-1\right) N_{b}^{m}}\right)-\mathscr{W}\left(\frac{j}{\left(N_{b}-1\right) N_{b}^{m}}\right)\right|
$$

iv. the geometric angles:

$$
\theta_{j-1, j, m}=\left(\left(y^{\prime} y\right),\left(\widehat{M_{j-1, m}} M_{j, m}\right)\right) \quad, \quad \theta_{j, j+1, m}=\left(\left(y^{\prime} y\right),\left(\widetilde{\left.\left.M_{j, m} M_{j+1, m}\right)\right), .}\right.\right.
$$

which yield the value of the geometric angle between consecutive edges

$$
\left[M_{j-1, m} M_{j, m}, M_{j, m} M_{j+1, m}\right]:
$$

$$
\theta_{j-1, j, m}+\theta_{j, j+1, m}=\arctan \frac{L_{m}}{\left|h_{j-1, j, m}\right|}+\arctan \frac{L_{m}}{\left|h_{j, j+1, m}\right|}
$$

Property (Scaling Properties of the Weierstrass Function, and Consequences)

Since, for any real number x

$$
\mathscr{W}(x)=\sum_{n=0}^{+\infty} \lambda^{n} \cos \left(2 \pi N_{b}^{n} x\right)
$$

one also has

$$
\mathscr{W}\left(N_{b} x\right)=\sum_{n=0}^{+\infty} \lambda^{n} \cos \left(2 \pi N_{b}^{n+1} x\right)=\frac{1}{\lambda} \sum_{n=1}^{+\infty} \lambda^{n} \cos \left(2 \pi N_{b}^{n} x\right)=\frac{1}{\lambda}\{\mathscr{W}(x)-\cos (2 \pi x)\}
$$

which yield, for any strictly positive integer m, and any j in $\left\{0, \cdots, \# V_{m}\right\}$:

$$
\mathscr{W}\left(\frac{j}{\left(N_{b}-1\right) N_{b}^{m}}\right)=\lambda \mathscr{W}\left(\frac{j}{\left(N_{b}-1\right) N_{b}^{m-1}}\right)+\cos \left(\frac{2 \pi j}{\left(N_{b}-1\right) N_{b}^{m-1}}\right)
$$

By induction, one obtains that

$$
\mathscr{W}\left(\frac{j}{\left(N_{b}-1\right) N_{b}^{m}}\right)=\lambda^{m} \mathscr{W}\left(\frac{j}{\left(N_{b}-1\right)}\right)+\sum_{k=0}^{m-1} \lambda^{k} \cos \left(\frac{2 \pi N_{b}^{k} j}{\left(N_{b}-1\right) N_{b}^{m}}\right)
$$

A Consequence of the Symmetry with respect to the Vertical

Line $x=\frac{1}{2}$

For any strictly positive integer m and any j in $\left\{0, \cdots, \# V_{m}\right\}$, we have that

$$
\mathscr{W}\left(\frac{j}{\left(N_{b}-1\right) N_{b}^{m}}\right)=\mathscr{W}\left(\frac{\left(N_{b}-1\right) N_{b}^{m}-j}{\left(N_{b}-1\right) N_{b}^{m}}\right)
$$

which means that the points

$$
\left(\frac{\left(N_{b}-1\right) N_{b}^{m}-j}{\left(N_{b}-1\right) N_{b}^{m}}, \mathscr{W}\left(\frac{\left(N_{b}-1\right) N_{b}^{m}-j}{\left(N_{b}-1\right) N_{b}^{m}}\right)\right) \quad \text { and } \quad\left(\frac{j}{\left(N_{b}-1\right) N_{b}^{m}}, \mathscr{W}\left(\frac{j}{\left(N_{b}-1\right) N_{b}^{m}}\right)\right)
$$

are symmetric with respect to the vertical line $x=\frac{1}{2}$.

Property

i. For $0 \leq \boldsymbol{j} \leq \frac{\left(N_{\boldsymbol{b}}-1\right)}{2}$: $\quad \mathscr{W}\left(\frac{j+1}{N_{b}-1}\right)-\mathscr{W}\left(\frac{j}{N_{b}-1}\right) \leq 0$.
ii. For $\frac{\left(\boldsymbol{N}_{\boldsymbol{b}}-1\right)}{2} \leq \boldsymbol{j} \leq \boldsymbol{N}_{\boldsymbol{b}}-1$: $\quad \mathscr{W}\left(\frac{j+1}{N_{b}-1}\right)-\mathscr{W}\left(\frac{j}{N_{b}-1}\right) \geq 0$.

Property

Given a strictly positive integer m :
i. For any j in $\left\{0, \cdots, \# V_{m}\right\}$, the point

$$
\left(\frac{j}{\left(N_{b}-1\right) N_{b}^{m}} \mathscr{W}\left(\frac{j}{\left(N_{b}-1\right) N_{b}^{m}}\right)\right)
$$

is the image of the point

$$
\left(\frac{j}{\left(N_{b}-1\right) N_{b}^{m-1}}-i, \mathscr{W}\left(\frac{j}{\left(N_{b}-1\right) N_{b}^{m-1}}-i\right)\right)=\left(\frac{j-i\left(N_{b}-1\right) N_{b}^{m-1}}{\left(N_{b}-1\right) N_{b}^{m-1}}, \mathscr{W}\left(\frac{j-i\left(N_{b}-1\right) N_{b}^{m-1}}{\left(N_{b}-1\right) N_{b}^{m-1}}\right)\right)
$$

by the map $T_{i}, 0 \leq i \leq N_{b}-1$.

As a consequence, the $\boldsymbol{j}^{\boldsymbol{t h}}$ vertex of the polygon $\mathscr{P}_{m, k}, 0 \leq k \leq N_{b}^{m}-1$, $0 \leq j \leq N_{b}-1$, i.e. the point:

$$
\left(\frac{\left(N_{b}-1\right) k+j}{\left(N_{b}-1\right) N_{b}^{m}}, \mathscr{W}\left(\frac{\left(N_{b}-1\right) k+j}{\left(N_{b}-1\right) N_{b}^{m}}\right)\right)
$$

is the image of the point

$$
\left(\frac{\left(N_{b}-1\right)\left(k-i\left(N_{b}-1\right) N_{b}^{m-1}\right)+j}{\left(N_{b}-1\right) N_{b}^{m-1}}, \mathscr{W}\left(\frac{\left(N_{b}-1\right)\left(k-i\left(N_{b}-1\right) N_{b}^{m-1}\right)+j}{\left(N_{b}-1\right) N_{b}^{m-1}}\right)\right)
$$

i.e. is the the $\boldsymbol{j}^{\boldsymbol{t h}}$ vertex of the polygon $\mathscr{P}_{m-1, k-i\left(N_{b}-1\right) N_{b}^{m-1}}$.

There is thus an exact correspondence between vertices of the polygons at consecutive steps $m-1, m$.
ii. Given j in $\left\{0, \cdots, N_{b}-2\right\}$, and k in $\left\{0, \cdots, N_{b}^{m}-1\right\}$:

$$
\operatorname{sign}\left(\mathscr{W}\left(\frac{k\left(N_{b}-1\right)+j+1}{\left(N_{b}-1\right) N_{b}^{m}}\right)-\mathscr{W}\left(\frac{k\left(N_{b}-1\right)+j}{\left(N_{b}-1\right) N_{b}^{m}}\right)\right)=\operatorname{sign}\left(\mathscr{W}\left(\frac{j+1}{N_{b}-1}\right)-\mathscr{W}\left(\frac{j}{N_{b}-1}\right)\right) .
$$

Bounding Result: Upper and Lower Bounds for the Elementary Heights

For any strictly positive integer m, and any j in $\left\{0, \cdots,\left(N_{b}-1\right) N_{b}^{m}\right\}$, we have that

$$
C_{\text {inf }} \underbrace{\lambda^{m}}_{N_{b}^{m(D W W-2)}} \leq\left|\mathscr{W}\left(\frac{j+1}{\left(N_{b}-1\right) N_{b}^{m}}\right)-\mathscr{W}\left(\frac{j}{\left(N_{b}-1\right) N_{b}^{m}}\right)\right| \leq C_{\text {sup }} \underbrace{\lambda^{m}}_{N_{b}^{m\left(D_{\mathscr{W}}-2\right)}}
$$

where

$$
C_{i n f}=\left(N_{b}-1\right)^{2-D_{\mathscr{W}}} \min _{0 \leq j \leq N_{b}-1}\left|\mathscr{W}\left(\frac{j+1}{N_{b}-1}\right)-\mathscr{W}\left(\frac{j}{N_{b}-1}\right)\right|
$$

and

$$
C_{\text {sup }}=\left(N_{b}-1\right)^{2-D \mathscr{W}}\left(\max _{0 \leq j \leq N_{b}-1}\left|\mathscr{W}\left(\frac{j+1}{N_{b}-1}\right)-\mathscr{W}\left(\frac{j}{N_{b}-1}\right)\right|+\frac{2 \pi}{\left(N_{b}-1\right)\left(\lambda N_{b}-1\right)}\right) .
$$

These constants depend on the initial polygon \mathscr{P}_{0}.

Theorem: Sharp Local Discrete Reverse Hölder Properties of the Weierstrass Function

For any natural integer m, and any pair of real numbers $\left(x, x^{\prime}\right)$ such that:

$$
x=\frac{\left(N_{b}-1\right) k+j}{\left(N_{b}-1\right) N_{b}^{m}}=\left(\left(N_{b}-1\right) k+j\right) L_{m} \quad, \quad x^{\prime}=\frac{\left(N_{b}-1\right) k+j+\ell}{\left(N_{b}-1\right) N_{b}^{m}}=\left(\left(N_{b}-1\right) k+j+\ell\right) L_{m}
$$

where $0 \leq k \leq N_{b}-1^{m}-1$, and
i. if the integer N_{b} is odd,

$$
\begin{gathered}
0 \leq j<\frac{N_{b}-1}{2} \quad \text { and } \quad 0<j+\ell \leq \frac{N_{b}-1}{2} \\
\text { or } \quad \frac{N_{b}-1}{2} \leq j<N_{b}-1 \quad \text { and } \quad \frac{N_{b}-1}{2}<j+\ell \leq N_{b}-1 ;
\end{gathered}
$$

ii. if the integer N_{b} is even,

$$
\begin{gathered}
0 \leq j<\frac{N_{b}}{2} \quad \text { and } \quad 0<j+\ell \leq \frac{N_{b}}{2} \\
\text { or } \quad \frac{N_{b}}{2}+1 \leq j<N_{b}-1 \quad \text { and } \quad \frac{N_{b}}{2}+1<j+\ell \leq N_{b}-1
\end{gathered}
$$

This means that the points $(x, \mathscr{W}(x))$ and $\left(x^{\prime}, \mathscr{W}\left(x^{\prime}\right)\right)$ are vertices of the polygon $\mathscr{P}_{\boldsymbol{m}, \boldsymbol{k}}$ both located on the left-side of the polygon, or on the right-side. Then, one has the following reverse-Hölder inequality, with sharp Hölder exponent $-\frac{\ln \lambda}{\ln N_{b}}=2-D_{\mathscr{W}}$,

$$
C_{i n f}\left|x^{\prime}-x\right|^{2-D_{\mathscr{W}}} \leq\left|\mathscr{W}\left(x^{\prime}\right)-\mathscr{W}(x)\right| .
$$

Corollary

One may now write, for any $m \in \mathbb{N}^{\star}$, and $0 \leq j \leq\left(N_{b}-1\right) N_{b}^{m}-1$:
i. for the elementary heights:

$$
h_{j-1, j, m}=L_{m}^{2-D_{\mathscr{W}}} \mathscr{O}(1)
$$

ii. for the elementary quotients:

$$
\frac{h_{j-1, j, m}}{L_{m}}=L_{m}^{1-D_{\mathscr{W}}} \mathscr{O}(1)
$$

where:

$$
0<C_{\text {inf }} \leq \mathscr{O}(1) \leq C_{\text {sup }}<\infty .
$$

II. Polyhedral Measure

m
 ${ }^{\text {th }}$ Cohomology Infinitesimal

Given any $m \in \mathbb{N}$, we will call $m^{\text {th }}$ cohomology infinitesimal the number

$$
\varepsilon_{m}^{m}=\frac{1}{N_{b}-1} \frac{1}{N_{b}^{m}} \underset{m \rightarrow \infty}{\rightarrow} 0
$$

Note that this $m^{t h}$ cohomology infinitesimal is the one naturally associated to the scaling relation of \mathscr{W}.

Polygonal Sets

For any $m \in \mathbb{N}$, the consecutive vertices of the prefractal graph $\Gamma_{\mathscr{W}_{m}}$ are the vertices of N_{b}^{m} simple polygons $\mathscr{P}_{m, k}$ with N_{b} sides. We now introduce the polygonal sets

$$
\mathscr{P}_{m}=\left\{\mathscr{P}_{m, k}, 0 \leq k \leq N_{b}^{m}-1\right\} \quad \text { and } \quad \mathscr{Q}_{m}=\left\{\mathscr{Q}_{m, k}, 0 \leq k \leq N_{b}^{m}-2\right\} .
$$

Notation

For any $m \in \mathbb{N}$, we denote by:
ii. $X \in \mathscr{P}_{m}$ (resp., $X \in \mathscr{Q}_{m}$) a vertex of a polygon $\mathscr{P}_{m, k}$, with $0 \leq k \leq N_{b}^{m}-1$ (resp., a vertex of a polygon $\mathscr{Q}_{m, k}$, with $\left.1 \leq k \leq N_{b}^{m}-2\right)$.
ii. $\mathscr{P}_{m} \bigcup \mathscr{Q}_{m}$ the reunion of the polygonal sets \mathscr{P}_{m} and \mathscr{Q}_{m}, which consists in the set of all the vertices of the polygons $\mathscr{P}_{m, k}$, with $0 \leq k \leq N_{b}^{m}-1$, along with the vertices of the polygons $\mathscr{Q}_{m, k}$, with $1 \leq k \leq N_{b}^{m}-2$. In particular, $X \in \mathscr{P}_{m} \bigcup \mathscr{Q}_{m}$ simply denotes a vertex in \mathscr{P}_{m} or \mathscr{Q}_{m}.
iii. $\quad \mathscr{P}_{m} \bigcap \mathscr{Q}_{m}$ the intersection of the polygonal sets \mathscr{P}_{m} and \mathscr{Q}_{m}, which consists in the set of all the vertices of both a polygon $\mathscr{P}_{m, k}$, with $0 \leq k \leq N_{b}^{m}-1$, and a polygon $\mathscr{Q}_{m, k^{\prime}}$, with $1 \leq^{\prime} k \leq N_{b}^{m}-2$.

Power of a Vertex

Given $m \in \mathbb{N}^{\star}$, a vertex X of $\Gamma_{\mathscr{W}_{m}}$ is said:
i. of power one relative to the polygonal family \mathscr{P}_{m} if X belongs to (or is a vertex of) one and only one N_{b}-gon $\mathscr{P}_{m, j}$, for $0 \leq j \leq N_{b}^{m}-1$;
ii. of power $\frac{1}{2}$ relative to the polygonal family \mathscr{P}_{m} if X is a common vertex to two consecutive N_{b}-gons $\mathscr{P}_{m, j}$ and $\mathscr{P}_{m, j+1}$, for $0 \leq j \leq N_{b}^{m}-2$;
iii. of power zero reative to the polygonal family \mathscr{P}_{m} if X does not belong to (or is not a vertex of) any N_{b}-gon $\mathscr{P}_{m, j}$, for $0 \leq j \leq N_{b}^{m}-1$.

Similarly, given $m \in \mathbb{N}$, a vertex X of $\Gamma_{\mathscr{W}_{m}}$ is said:
i. of power one relative to the polygonal family \mathscr{Q}_{m} if X belongs to (or is a vertex of) one and only one N_{b}-gon $\mathscr{P}_{m, j}$, for $0 \leq j \leq N_{b}^{m}-2$;
ii. of power $\frac{1}{2}$ relative to the polygonal family \mathscr{P}_{m} if X is a common vertex to two consecutive N_{b}-gons $\mathscr{Q}_{m, j}$ and $\mathscr{Q}_{m, j+1}$, for $0 \leq j \leq N_{b}^{m}-3$;
iii. of power zero reative to the polygonal family \mathscr{P}_{m} if X does not belong to (or is not a vertex of) any N_{b}-gon $\mathscr{Q}_{m, j}$, for $0 \leq j \leq N_{b}^{m}-2$.

Sequence of Domains Delimited by the \mathscr{W} IFD

We introduce the sequence of domains delimited by the Weierstrass IFD as the sequence $\left(\mathscr{D}\left(\Gamma_{\mathscr{W}_{m}}\right)\right)_{m \in \mathbb{N}}$ of open, connected polygonal sets $\left(\mathscr{P}_{m} \cup \mathscr{Q}_{m}\right)_{m \in \mathbb{N}}$, where, for each $m \in \mathbb{N}, \mathscr{P}_{m}$ and \mathscr{Q}_{m} respectively denote the polygonal sets introduced just above.

$$
\mathscr{D}\left(\Gamma_{\mathscr{W}_{2}}\right) \text { and } \mathscr{D}\left(\Gamma_{\mathscr{W}_{3}}\right) \text {, for } \lambda=\frac{1}{2} \text { and } \boldsymbol{N}_{\boldsymbol{b}}=3 .
$$

$\mathscr{D}\left(\Gamma_{\mathscr{W}_{5}}\right)$, for $\boldsymbol{\lambda}=\frac{1}{2}$ and $\boldsymbol{N}_{\boldsymbol{b}}=3$.

Domain Delimited by the Weierstrass IFD

We call domain, delimited by the Weierstrass IFD, the set, which is equal to the following limit,

$$
\mathscr{D}\left(\Gamma_{\mathscr{W}}\right)=\lim _{m \rightarrow \infty} \mathscr{D}\left(\Gamma_{\mathscr{W}_{m}}\right),
$$

where the convergence is interpreted in the sense of the Hausdorff metric on \mathbb{R}^{2}. In fact, we have that

$$
\mathscr{D}\left(\Gamma_{\mathscr{W}}\right)=\Gamma_{\mathscr{W}} .
$$

Notation (Lebesgue Measure (on $\left.\mathbb{R}^{2}\right)$)

In the sequel, we denote by $\mu_{\mathscr{L}}$ the Lebesgue measure on \mathbb{R}^{2}.

Notation

For any $m \in \mathbb{N}$, and any vertex X of V_{m}, we set:

$$
\begin{aligned}
& \text { if } X \in \mathscr{P}_{m} \cap \mathscr{Q}_{m} \text {. }
\end{aligned}
$$

Property

Given a continuous function u on $[0,1] \times\left[m_{\mathscr{W}}, M_{\mathscr{W}}\right]$, we have that, for any $m \in \mathbb{N}$, and any vertex X of V_{m} :

$$
\left|\mu^{\mathscr{L}}\left(X, \mathscr{P}_{m}, \mathscr{Q}_{m}\right) u(X)\right| \leq \mu^{\mathscr{L}}\left(X, \mathscr{P}_{m}, \mathscr{Q}_{m}\right)\left(\max _{[0,1] \times\left[m_{\mathscr{W}}, M_{\mathscr{W}}\right]}|u|\right) \leqslant N_{b}^{-\left(3-D_{\mathscr{W}}\right) m} .
$$

Consequently, we have that

$$
\varepsilon_{\boldsymbol{m}}^{\boldsymbol{m}\left(D_{\mathscr{W}}-2\right)}\left|\mu^{\mathscr{L}}\left(X, \mathscr{P}_{\boldsymbol{m}}, \mathscr{Q}_{\boldsymbol{m}}\right) \boldsymbol{u}(X)\right| \leqslant \varepsilon_{m}^{-\boldsymbol{m}}
$$

Since the sequence $\left(\sum_{x \in \mathscr{P}_{m} \cup \mathscr{Q}_{m}} \varepsilon_{m}^{-m}\right)_{m \in \mathbb{N}}$ is a positive and increasing sequence
(the number of vertices involved increases as \boldsymbol{m} increases), this ensures the existence of the finite limit

$$
\lim _{m \rightarrow \infty} \varepsilon_{m}^{m\left(D_{\mathscr{W}}-2\right)} \sum_{x \in \mathscr{P}_{m} \cup \mathscr{Q}_{m}} \mu^{\mathscr{L}}\left(X, \mathscr{P}_{m}, \mathscr{Q}_{m}\right) u(X) .
$$

Theorem: Polyhedral Measure on the Weierstrass IFD ~ I

We introduce the polyhedral measure on the Weierstrass IFD, denoted by μ, such that for any continuous function u on the Weierstrass Curve,

$$
\int_{\Gamma_{\mathscr{W}}} u d \mu=\lim _{m \rightarrow \infty} \varepsilon_{m}^{m\left(D_{\mathscr{W}}-2\right)} \sum_{x \in \mathscr{P}_{m} \cup \mathscr{Q}_{m}} \mu^{\mathscr{L}}\left(X, \mathscr{P}_{m}, \mathscr{Q}_{m}\right) u(X),
$$

which can also be understood in the following way,

$$
\int_{\Gamma_{\mathscr{W}}} u d \mu=\int_{\mathscr{D}\left(\Gamma_{W}\right)} u d \mu .
$$

Theorem: Polyhedral Measure on the Weierstrass IFD ~ II

The polyhedral measure μ is well defined, positive, as well as a bounded, nonzero, Borel measure on $\mathscr{D}\left(\Gamma_{\mathscr{W}}\right)$. The associated total mass is given by

$$
\mu\left(\mathscr{D}\left(\Gamma_{\mathscr{W}}\right)\right)=\lim _{m \rightarrow \infty} \varepsilon_{m}^{m\left(D_{\mathscr{W}}-2\right)} \sum_{X \in \mathscr{P}_{m} \cup \mathscr{Q}_{m}} \mu^{\mathscr{L}}\left(X, \mathscr{P}_{m}, \mathscr{Q}_{m}\right), \quad(\star \star)
$$

and satisfies the following estimate:

$$
\mu\left(\mathscr{D}\left(\Gamma_{\mathscr{W}}\right)\right) \leq \frac{2}{N_{b}}\left(N_{b}-1\right)^{2} C_{s u p} \cdot(\star \star \star)
$$

Furthermore, the support of μ coincides with the entire curve:

$$
\operatorname{supp} \mu=\mathscr{D}\left(\Gamma_{\mathscr{W}}\right)=\Gamma_{\mathscr{W}}
$$

Theorem - II

In addition, μ is the weak limit as $m \rightarrow \infty$ of the following discrete measures (or Dirac Combs), given, for each $m \in \mathbb{N}$, by

$$
\mu_{m}=\varepsilon_{m}^{m\left(D_{\mathscr{W}}-2\right)} \sum_{X \in \mathscr{P}_{m} \cup \mathscr{Q}_{m}} \mu^{\mathscr{L}}\left(X, \mathscr{P}_{m}, \mathscr{Q}_{m}\right) \delta_{X},
$$

where ε denotes the cohomology infinitesimal, and δ_{X} the Dirac measure concentrated at X.

III. Polyhedral and Tubular Neighborhoods

Classical Approach

Aim: Following ${ }^{\text {XVII, }}$ XVIII and XIX

one requires fractal tube formulae for the IFD

i.e., the area of a two-sided ϵ-neighborhood of each prefractal approximation.

```
XVIIMichel L. Lapidus, Goran Radunović, and Darko Žubrinić. Fractal Zeta Functions and
Fractal Drums: Higher-Dimensional Theory of Complex Dimensions. Springer Monographs in
Mathematics. Springer, New York, 2017, pp. xl+655.
XVIII Michel L. Lapidus, Goran Radunović, and Darko Žubrinić. "Fractal tube formulas for
compact sets and relative fractal drums: Oscillations, complex dimensions and fractality". In:
Journal of Fractal Geometry. Mathematics of Fractals and Related Topics 5.1 (2018), pp. 1-119.
    XIX Michel L. Lapidus. "An overview of complex fractal dimensions: From fractal strings to
fractal drums, and back". In: Horizons of Fractal Geometry and Complex Dimensions. Vol. }731
Contemporary Mathematics. Amer. Math. Soc., Providence, RI, 2019, pp. 143-265.
```

The fractal tube formula is expected to consist of an expansion of the form, in the case of simple Complex Dimensions,
α real part of a Complex Dimension $\epsilon^{2-\alpha} G_{\alpha}\left(\ln _{N_{b}}\left(\frac{1}{\epsilon}\right)\right)$,
(apart from ponctual terms) where, for any real part α of a Complex Dimension, G_{α} denotes a continuous and one-periodic function.

Instead of Tubular Neighborhoods

We can also consider

Polyhedral Neighborhoods

Polyhedral Neighborhood

We consider the sequence of domains delimited by the Weierstrass IFD as the sequence $\left(\mathscr{D}\left(\Gamma_{\mathscr{W}_{m}}\right)\right)_{m \in \mathbb{N}}$ of open, connected polygonal sets $\left(\mathscr{P}_{m} \cup \mathscr{Q}_{m}\right)_{m \in \mathbb{N}}$. Given $\in \mathbb{N}, \mathscr{D}\left(\Gamma_{\mathscr{W}_{m}}\right)$ is the $m^{t h}$ polyhedral neighborhood (of the Weierstrass Curve).

Exact Expression

In the case where $N_{b}=3$, given $m \in \mathbb{N}^{\star}$, the volume (or two-dimensional Lebesgue measure) of the $m^{\text {th }}$-polygonal neighborhood $\mathscr{D}\left(\Gamma_{\mathscr{W}_{m}}\right)$ is given by

$$
\mathscr{V}_{m}\left(\varepsilon_{m}^{m}\right)=\mu_{\mathscr{L}}\left(\mathscr{D}\left(\Gamma_{\mathscr{W}_{m}}\right)\right)=\frac{\varepsilon_{m}^{m}}{2}\left(\mathscr{W}(0)+\mathscr{W}\left(2 \varepsilon_{m}^{m}\right)-2 \mathscr{W}\left(\varepsilon_{m}^{m}\right)\right)
$$

Proof

i. For $1 \leq j \leq \# V_{m}-2$,

$$
\mu_{\mathscr{L}}\left(\mathscr{Q}_{m, j}\right)=\frac{\varepsilon_{m}^{m}}{2}\left(2 \mathscr{W}\left(\frac{j+1}{\left(N_{b}-1\right) N_{b}^{m}}\right)-\mathscr{W}\left(\frac{j}{\left(N_{b}-1\right) N_{b}^{m}}\right)-\mathscr{W}\left(\frac{j+2}{\left(N_{b}-1\right) N_{b}^{m}}\right)\right) .
$$

ii. For $1 \leq j \leq \# V_{m}-1$,

$$
\mu_{\mathscr{L}}\left(\mathscr{P}_{m, j}\right)=\frac{\varepsilon_{m}^{m}}{2}\left(\mathscr{W}\left(\frac{j-1}{\left(N_{b}-1\right) N_{b}^{m}}\right)+\mathscr{W}\left(\frac{j+1}{\left(N_{b}-1\right) N_{b}^{m}}\right)-2 \mathscr{W}\left(\frac{j}{\left(N_{b}-1\right) N_{b}^{m}}\right)\right) .
$$

iii. We then have that

$$
\mathscr{V}_{m}\left(\varepsilon_{m}^{m}\right)=\sum_{j=1}^{\# v_{m}^{-3}}\left(\mu_{\mathscr{L}}\left(\mathscr{P}_{m, j}\right)+\mu_{\mathscr{L}}\left(\mathscr{Q}_{m, j}\right)\right)+\mu_{\mathscr{L}}\left(\mathscr{P}_{m, N_{b}^{m}}\right)=\frac{\varepsilon_{m}^{m}}{2}\left(1+\mathscr{W}\left(2 \varepsilon_{m}^{m}\right)-2 \mathscr{W}\left(\varepsilon_{m}^{m}\right)\right),
$$

since, thanks to the symmetry with respect to the vertical line $x=\frac{1}{2}$,

$$
\mathscr{W}\left(\frac{\left(N_{b}-1\right) N_{b}^{m}-1}{\left(N_{b}-1\right) N_{b}^{m}}\right)=\mathscr{W}\left(\frac{1}{\left(N_{b}-1\right) N_{b}^{m}}\right) \quad \text { and } \quad \mathscr{W}\left(\frac{\left(N_{b}-1\right) N_{b}^{m}-2}{\left(N_{b}-1\right) N_{b}^{m}}\right)=\mathscr{W}\left(\frac{2}{\left(N_{b}-1\right) N_{b}^{m}}\right) .
$$

Comparison with Tubular Neighborhoods

In the sequel, we denote by d the Euclidean distance.

Given a natural integer m, we introduce:
i. The $\left(m, \varepsilon_{m}^{m}\right)$-Upper Neighborhood:

$$
\mathscr{D}^{+}\left(\Gamma_{\mathscr{W}_{m}}, \varepsilon_{m}^{m}\right)=\left\{M=(x, y) \in \mathbb{R}^{2}, y \geq \mathscr{W}(x) \text { and } d\left(M, \Gamma_{\mathscr{W}_{m}}\right) \leq \varepsilon_{m}^{m}\right\} .
$$

ii. The $\left(m, \varepsilon_{m}^{m}\right)$-Lower Neighborhood:

$$
\mathscr{D}^{-}\left(\Gamma_{\mathscr{W}_{m}}, \varepsilon_{m}^{m}\right)=\left\{M=(x, y) \in \mathbb{R}^{2}, y \leq \mathscr{W}(x) \text { and } d\left(M, \Gamma_{\mathscr{W}_{m}}\right) \leq \varepsilon_{m}^{m}\right\} .
$$

The $\left(m, \varepsilon_{m}^{m}\right)$-upper and lower Neighborhoods are then obtained by means of rectangles and wedges.

The $\left(1, \varepsilon_{1}^{1}\right)$-Upper Neighborhood, in the case where $\boldsymbol{\lambda}=\frac{1}{2}$ and $\boldsymbol{N}_{b}=3$.

Two overlapping rectangles, in the case where $\lambda=\frac{1}{2}$ and $N_{b}=3$.

The $\left(1, \varepsilon_{1}^{1}\right),\left(2, \varepsilon_{2}^{2}\right)$ and $\left(3, \varepsilon_{3}^{3}\right)$-Neighborhoods, in the case where $\boldsymbol{\lambda}=\frac{1}{2}$ and $\boldsymbol{N}_{\boldsymbol{b}}=3$.

(Sorbonne Université - LJLL)

The $\left(1, \varepsilon_{1}^{1}\right),\left(2, \varepsilon_{2}^{2}\right)$ and $\left(3, \varepsilon_{3}^{3}\right)$-Neighborhoods, in the case where $\lambda=\frac{1}{2}$ and $N_{b}=4$.

Proposition: $\left(m, \varepsilon_{m}^{m}\right)$-Upper Neighborhood

Given a strictly positive integer m, the $\left(m, \varepsilon_{m}^{m}\right)$-Upper Neighborhood is constituted of:
i. $\left(N_{b}-1\right) N_{b}^{m}$ overlapping rectangles, each of length $\ell_{j-1, j, m}, 1 \leq j \leq N_{b}^{m}-1$, and height ε_{m}^{m}.
The area that is counted twice corresponds to parallelograms, of height ε_{m}^{m} and basis $\varepsilon_{m}^{m} \operatorname{cotan}\left(\pi-\theta_{j-1, j, m}-\theta_{j, j+1, m}\right)$.
Since one deals here with an upper neighborhood, one also has to substract the areas of the extra outer lower triangles.
ii. $N_{b}^{m}\left(1+2\left[\frac{N_{b}-3}{4}\right]\right)-1$ upper wedges. The number of wedges is determined by the shape of the initial polygon \mathscr{P}_{0}, as well by the existence of reentrant angles.
iii. Two extreme wedges, each of area

$$
\frac{1}{2} \pi\left(\varepsilon_{m}^{m}\right)^{2}
$$

Proposition: $\left(m, \varepsilon_{m}^{m}\right)$-Lower Neighborhood

In the same way, given a strictly positive integer m, the $\left(m, \varepsilon_{m}^{m}\right)$-Lower Neighborhood is thus constituted of:
i. $\left(N_{b}-1\right) N_{b}^{m}$ overlapping rectangles, each of length $\ell_{j-1, j, m}, 1 \leq j \leq N_{b}^{m}-1$, and height ε_{m}^{m}.
The area that is thus counted twice again corresponds to parallelograms, of height ε_{m}^{m} and basis $\varepsilon_{m}^{m} \operatorname{cotan}\left(\pi-\theta_{j-1, j, m}-\theta_{j, j+1, m}\right)$. Since one deals here with a lower neighborhood, one has this time to substract the areas of the upper extra outer upper triangles.
ii. $N_{b}^{m}\left(N_{b}-2\left[\frac{N_{b}-3}{4}\right]\right)-1$ lower wedges.

The number of lower wedges is determined by the shape of the initial polygon \mathscr{P}_{0}, as well as by the existence of reentrant angles.

The $\left(m, \varepsilon_{m}^{m}\right)$-upper and lower Neighborhoods are then obtained by means of rectangles and wedges.

The $\left(1, \varepsilon_{1}^{1}\right)$-Upper Neighborhood, in the case where $\boldsymbol{\lambda}=\frac{1}{2}$ and $\boldsymbol{N}_{b}=3$.

Two overlapping rectangles, in the case where $\lambda=\frac{1}{2}$ and $N_{b}=3$.

The $\left(1, \varepsilon_{1}^{1}\right),\left(2, \varepsilon_{2}^{2}\right)$ and $\left(3, \varepsilon_{3}^{3}\right)$-Neighborhoods, in the case where $\boldsymbol{\lambda}=\frac{1}{2}$ and $\boldsymbol{N}_{\boldsymbol{b}}=3$.

(Sorbonne Université - LJLL)

The $\left(1, \varepsilon_{1}^{1}\right),\left(2, \varepsilon_{2}^{2}\right)$ and $\left(3, \varepsilon_{3}^{3}\right)$-Neighborhoods, in the case where $\lambda=\frac{1}{2}$ and $N_{b}=4$.

Proposition: $\left(m, \varepsilon_{m}^{m}\right)$-Upper Neighborhood

Given a strictly positive integer m, the $\left(m, \varepsilon_{m}^{m}\right)$-Upper Neighborhood is constituted of:
i. $\left(N_{b}-1\right) N_{b}^{m}$ overlapping rectangles, each of length $\ell_{j-1, j, m}, 1 \leq j \leq N_{b}^{m}-1$, and height ε_{m}^{m}.
The area that is counted twice corresponds to parallelograms, of height ε_{m}^{m} and basis $\varepsilon_{m}^{m} \operatorname{cotan}\left(\pi-\theta_{j-1, j, m}-\theta_{j, j+1, m}\right)$.
Since one deals here with an upper neighborhood, one also has to substract the areas of the extra outer lower triangles.
ii. $N_{b}^{m}\left(1+2\left[\frac{N_{b}-3}{4}\right]\right)-1$ upper wedges. The number of wedges is determined by the shape of the initial polygon \mathscr{P}_{0}, as well by the existence of reentrant angles.
iii. Two extreme wedges, each of area

$$
\frac{1}{2} \pi\left(\varepsilon_{m}^{m}\right)^{2}
$$

Proposition: $\left(m, \varepsilon_{m}^{m}\right)$-Lower Neighborhood

In the same way, given a strictly positive integer m, the $\left(m, \varepsilon_{m}^{m}\right)$-Lower Neighborhood is thus constituted of:
i. $\left(N_{b}-1\right) N_{b}^{m}$ overlapping rectangles, each of length $\ell_{j-1, j, m}, 1 \leq j \leq N_{b}^{m}-1$, and height ε_{m}^{m}.
The area that is thus counted twice again corresponds to parallelograms, of height ε_{m}^{m} and basis $\varepsilon_{m}^{m} \operatorname{cotan}\left(\pi-\theta_{j-1, j, m}-\theta_{j, j+1, m}\right)$. Since one deals here with a lower neighborhood, one has this time to substract the areas of the upper extra outer upper triangles.
ii. $N_{b}^{m}\left(N_{b}-2\left[\frac{N_{b}-3}{4}\right]\right)-1$ lower wedges.

The number of lower wedges is determined by the shape of the initial polygon \mathscr{P}_{0}, as well as by the existence of reentrant angles.

Theorem: The Nested Neighborhoods

i. Given $m \in \mathbb{N}$, there exists $m_{1} \in \mathbb{N}$ such that, for all $k \geq m_{1}$, the polyhedral neighborhood $\mathscr{D}\left(\Gamma_{\mathscr{W}_{m}}\right)$ contains, but for a finite number of wedges, the $\left(m+k, \varepsilon_{m+k}^{m+k}\right)$ tubular neighborhood $\mathscr{D}^{\text {tube }}\left(\Gamma_{\mathscr{W}_{m+k}}, \varepsilon_{m+k}^{m+k}\right)$.
ii. Given $m \in \mathbb{N}$, there exists $m_{2} \in \mathbb{N}$ such that, for all $k \geq m_{2}$, the tubular $\left(m, \varepsilon_{m}^{m}\right)$-neighborhood $\mathscr{D}^{\text {tube }}\left(\Gamma_{\mathscr{W}_{m}}, \varepsilon_{m}^{m}\right)$ contains the polyhedral neighborhood $\mathscr{D}\left(\Gamma_{\mathscr{W}_{m+k}}\right)$.

$\mathscr{D}\left(\Gamma_{\mathscr{W}_{2}}\right)$ (in red), and $\mathscr{D}^{\text {tube }}\left(\Gamma_{\mathscr{W}_{7}}, \varepsilon_{7}^{7}\right)$, in the case where $\lambda=\frac{1}{2}$ and $N_{b}=3$.

The polygonal neigborhood $\mathscr{D}\left(\Gamma_{\mathscr{W}_{3}}\right)$, in the case where $\lambda=\frac{1}{2}$ and $N_{b}=3$.
$\mathscr{D}\left(\Gamma_{\mathscr{W}_{3}}\right)$ (in red), and $\mathscr{D}^{\text {tube }}\left(\Gamma_{\mathscr{W}_{7}}, \varepsilon_{7}^{7}\right)$, in the case where $\lambda=\frac{1}{2}$ and $N_{b}=3$.

$\mathscr{D}\left(\Gamma_{\mathscr{W}_{5}}\right)$ and $\mathscr{D}^{\text {tube }}\left(\Gamma_{\mathscr{W}_{3}}, \varepsilon_{3}^{3}\right)$, in the case where $\lambda=\frac{1}{2}$ and $N_{b}=3$.

Proof

i. At a given step $m \geq 0$, between two adjacent vertices $M_{i, m}$ and $M_{i+1, m}$ of V_{m}, there are $N_{b}-1$ consecutive vertices of $V_{m+1} \backslash V_{m},\left(M_{j+1, m+1}, \cdots, M_{j+N_{b}-2, m+1}\right) \in V_{n}$ such that

$$
M_{i, m}=M_{j, m+1} \quad \text { and } \quad M_{i+1, m}=M_{j+N_{b}, m+1} .
$$

We dispose of an exact correspondance between vertices of the polygons at the step $m+1$, and at the initial step $m=0$. Since reentrant angles occur when $N_{b} \geq 7$, we can restrict ourselves to the cases $N_{b} \leq 6$ (in the case of reentrant angles, the following arguments can be suitably adjusted). We then simply have to consider the $\left[\frac{N_{b}-2}{2}\right]$ vertices $M_{j+k, m+1}$, with $1 \leq k \leq\left[\frac{N_{b}-2}{2}\right]$ (the same arguments holds for the vertices $M_{j+N_{b}-k, m+1}$). Given j in $\left\{0, \cdots, N_{b}-2\right\}$ and k in $\left\{0, \cdots, N_{b}^{m+1}-1\right\}$, we have that

$$
\operatorname{sgn}\left(\mathscr{W}\left(\frac{k\left(N_{b}-1\right)+j+1}{\left(N_{b}-1\right) N_{b}^{m+1}}\right)-\mathscr{W}\left(\frac{k\left(N_{b}-1\right)+j}{\left(N_{b}-1\right) N_{b}^{m+1}}\right)\right)=\operatorname{sgn}\left(\mathscr{W}\left(\frac{j+1}{N_{b}-1}\right)-\mathscr{W}\left(\frac{j}{N_{b}-1}\right)\right),
$$

i.e., equivalently,

$$
\operatorname{sgn}\left(\mathscr{W}\left(\left(k\left(N_{b}-1\right)+j+1\right) L_{m+1}\right)-\mathscr{W}\left(\left(k\left(N_{b}-1\right)+j\right) L_{m+1}\right)\right)=\operatorname{sgn}\left(\mathscr{W}\left(\frac{j+1}{N_{b}-1}\right)-\mathscr{W}\left(\frac{j}{N_{b}-1}\right)\right) .
$$

Due to the symmetry of the initial polygon \mathscr{P}_{0} (or, equivalently, of the initial prefractal graph $\Gamma_{\mathscr{W}_{0}}$) with respect to the vertical line $x=\frac{1}{2}$ (see Property 1), this means that we can restrict ourselves to the case when

$$
\mathscr{W}\left(j L_{m+1}\right) \geq \mathscr{W}\left((j+1) L_{m+1}\right) \geq \cdots \geq \mathscr{W}\left(\left(j+\left[\frac{N_{b}-2}{2}\right]\right) L_{m+1}\right)
$$

and

$$
\underbrace{\mathscr{W}\left(j L_{m+1}\right)}_{\mathscr{W}\left(i L_{m}\right)} \geq \underbrace{\mathscr{W}\left(\left(j+N_{b}\right) L_{m+1}\right)}_{\mathscr{W}\left((i+1) L_{m}\right)},
$$

since

$$
M_{i, m}=M_{j, m+1} \quad \text { and } \quad M_{i+1, m}=M_{j+N_{b}, m+1} .
$$

We then deduce, by triangle inequality, for $1 \leq k \leq\left[\frac{N_{b}-2}{2}\right]$, that

$$
|\mathscr{W}\left((j+k) L_{m+1}\right)-\underbrace{\mathscr{W}\left(j L_{m+1}\right)}_{\mathscr{W}\left(i L_{m}\right)}| \leq\left[\frac{N_{b}-2}{2}\right] C_{s u p} L_{m+1}^{2-D_{\mathscr{W}}}
$$

Since

$$
L_{m+1}=\frac{L_{m}}{N_{b}}
$$

we then obtain that

$$
|\mathscr{W}\left((j+k) L_{m+1}\right)-\underbrace{\mathscr{W}\left(j L_{m+1}\right)}_{\mathscr{W}\left(i L_{m}\right)}| \leq\left[\frac{N_{b}-2}{2}\right] N_{b}^{D_{\mathscr{W}}-2} C_{\text {sup }} L_{m}^{2-D_{\mathscr{W}}}
$$

Recall now that

$$
C_{i n f}=\left(N_{b}-1\right)^{2-D_{\mathscr{W}}} \min _{0 \leq j \leq N_{b}-1}\left|\mathscr{W}\left(\frac{j+1}{N_{b}-1}\right)-\mathscr{W}\left(\frac{j}{N_{b}-1}\right)\right|
$$

and

$$
C_{\text {sup }}=\left(N_{b}-1\right)^{2-D \mathscr{W}}\left(\max _{0 \leq j \leq N_{b}-1}\left|\mathscr{W}\left(\frac{j+1}{N_{b}-1}\right)-\mathscr{W}\left(\frac{j}{N_{b}-1}\right)\right|+\frac{2 \pi}{\left(N_{b}-1\right)\left(\lambda N_{b}-1\right)}\right) .
$$

Here, we have that

$$
\mathscr{W}\left(\frac{j}{N_{b}-1}\right)=\frac{1}{1-\lambda} \cos \frac{2 \pi j}{N_{b}-1} .
$$

This ensures that

$$
\left|\mathscr{W}\left(\frac{j+1}{N_{b}-1}\right)-\mathscr{W}\left(\frac{j}{N_{b}-1}\right)\right| \leq \frac{2 \pi}{N_{b}-1} \frac{1}{1-\lambda} .
$$

We can check numerically that

$$
\left[\frac{N_{b}-2}{2}\right] N_{b}^{D_{\mathscr{W}}-2} C_{\text {sup }} \leq C_{i n f}
$$

from which we immediately deduce that for, $1 \leq k \leq\left[\frac{N_{b}-2}{2}\right]$,

$$
|\mathscr{W}\left((j+k) L_{m+1}\right)-\underbrace{\mathscr{W}\left(j L_{m+1}\right)}_{\mathscr{W}\left(i L_{m}\right)}| \leq\left|\mathscr{W}\left((i+1) L_{m}\right)-\mathscr{W}\left(i L_{m}\right)\right|
$$

For $1 \leq k \leq\left[\frac{N_{b}-2}{2}\right]$, the vertices $M_{j+k, m+1}$ are then strictly between the vertices $M_{i, m}$ and $M_{i+1, m}$. As is explained previously, we can show, in a similar way, that for $1 \leq k \leq\left[\frac{N_{b}-2}{2}\right]$, the vertices $M_{j+N_{b}-k, m+1}$ are also strictly between the vertices $M_{i, m}$ and $M_{i+1, m}$.

By induction, we then obtain that, given four consecutive adjacent vertices $M_{i, m}, M_{i+1,}$, and $M_{i+4, m}$ of V_{m}, with $1 \leq i \leq \# V_{m}-5$ and $k \in \mathbb{N}$, the vertices of $V_{m+k} \backslash V_{m}$ located between $M_{i, m}$ and $M_{i+4, m}$ can be all comprised in the simple and convex polygon $M_{i, m} M_{i+1, m} M_{i+3, m} M_{i+4, m}$, which coincides with the union of two consecutive polygons $\mathscr{P}_{m, j}$ and $\mathscr{Q}_{m, j}$. Thus, there exists $m_{0} \in \mathbb{N}$ such that, for all $k \geq m_{0}$, the $\left(m+k, \varepsilon_{m+k}^{m+k}\right)$-neighborhood

$$
\mathscr{D}\left(\Gamma_{\mathscr{W}_{m+k}}, \varepsilon_{m+k}^{m+k}\right)=\left\{M=(x, y) \in \mathbb{R}^{2}, d\left(M, \Gamma_{\mathscr{W}_{m+k}}\right) \leq \varepsilon_{m+k}^{m+k}\right\},
$$

from which we remove the wedges associated to the vertices $M_{i, m}, M_{i+1, m}, M_{i+3, m}$ and $M_{i+4, m}\left(\right.$ see $\left.^{\mathrm{XX}}\right)$, can be totally included in the polygon $M_{i, m} M_{i+1, m} M_{i+3, m} M_{i+4, m}$. Hence, there exists $m_{1} \in \mathbb{N}$ such that, for all $k \geq m_{1}$, the (m, ε_{m}^{m})-neighborhood but for a finite number of wedges, the ($m+k, \varepsilon_{m+k}^{m+k}$)-neighborhood
$\mathscr{D}\left(\Gamma_{\mathscr{W}_{m+k}}, \varepsilon_{m+k}^{m+k}\right)$, can be totally included in the polygonal domain $\mathscr{D}\left(\Gamma_{\mathscr{W}_{m}}\right)$.

[^3]ii. This latter result has been obtained in ${ }^{\mathrm{XXI}}$. It comes from the fact that, in the sense of the Hausdorff metric on \mathbb{R}^{2},
$$
\lim _{m \rightarrow \infty} \mathscr{D}\left(\Gamma_{\mathscr{W}_{m}}\right)=\Gamma_{\mathscr{W}} .
$$

[^4]Polyhedral Measures, Atomic Decompositions and Morse Theory. 2022.

IV. Zeta Functions

Complex Dimensions

Zeta functions ?

They represent the trace of a differential operator at a complex order s

$$
\downarrow
$$

Poles: Maximal Orders of Differentiation

\downarrow

Dimensions

Difficulty:

In our present context, when it comes to obtain the associated fractal tube zeta function, we cannot, as in the case of an arbitrary subset of \mathbb{R}^{2} (see ${ }^{\mathrm{XXII}}$, Def. 2.2.8, p. 118), directly use an integral formula of the form

$$
\tilde{\zeta}_{m}(s)=\int_{0}^{\varepsilon_{m}^{m}} t^{s-2} \mathscr{V}_{m}(t) \frac{d t}{t}
$$

since the tube formulas can only be expressed in an explicit way at a cohomology infinitesimal.

However, we can use Riemann sums, for the following nonuniform partition of the interval $\left[0, \varepsilon_{m}^{m}\right]$, where $k \rightarrow \infty$,

$$
\left[0, \varepsilon_{m}^{m}\right]=\left[0, \varepsilon_{m k}^{m k}\right] \bigcup\left\{\bigcup_{m+k+p=m}^{m+k+p=m+k}\left[\varepsilon_{m+k+p+1}^{m+k+p+1}, \varepsilon_{m+k+p}^{m+k+p}\right]\right\} \bigcup\left[\varepsilon_{m+k}^{m+k}, \varepsilon_{m}^{m}\right] .
$$

${ }^{\text {XXII }}$ Michel L. Lapidus, Goran Radunović, and Darko Žubrinić. Fractal Zeta Functions and Fractal Drums: Higher-Dimensional Theory of Complex Dimensions. Springer Monographs in Mathematics. Springer, New York, 2017, pp. xl +655.

Theorem: $m^{\text {th }}$-Prefractal Effective Polyhedral Zeta Function ~ I

Given $m \in \mathbb{N}$, we introduce the $m^{t h}$-prefractal effective polyhedral zeta function such that, for admissible values of the complex number s,

$$
\tilde{\zeta}_{m}^{e}(s)=\int_{0}^{\varepsilon_{m}^{m}} t^{s-3} \widetilde{\mathscr{V}}_{m}(t) d t=\frac{\varepsilon_{m}^{m(s-1)}}{2(s-1)}+\int_{0}^{\varepsilon_{m}^{m}} t^{s-3}(\mathscr{W}(2 t)-2 \mathscr{W}(t)) d t
$$

where $\widetilde{\mathscr{V}}_{m}$ is the volume extension function associated with \mathscr{V}_{m}.

The associated sequence $\left(\tilde{\zeta}_{m}^{e}\right)_{m \in \mathbb{N}}$ satisfies the following recurrence relation, for values of the integer m sufficiently large,

$$
\tilde{\zeta}_{m+1}^{e}(s)=N_{b}^{3-s} \tilde{\zeta}_{m}^{e}(s)+\frac{1}{2}(1-\lambda) N_{b}^{3-s} \frac{\varepsilon_{m}^{m(s-1)}}{s-1}+N_{b}^{3-s} \int_{0}^{\varepsilon_{m}^{m}} t^{s-2} \frac{1}{2 N_{b}} \mathscr{R} e\left(e^{i 4 \pi t}-2 e^{i 2 \pi t}\right) d t
$$

Theorem: $m^{\text {th }}$-Prefractal Effective Polyhedral Zeta Function ~ II

This ensures the existence of the limit fractal zeta function, i.e., the fractal zeta function associated with the Weierstrass Curve $\Gamma_{\mathscr{W}}$, given by

$$
\tilde{\zeta}_{\mathscr{W}}^{e}=\lim _{m \rightarrow \infty} \tilde{\zeta}_{m}^{e},
$$

along with the existence of an integer $m_{0} \in \mathbb{N}$ such that the poles of $\tilde{\zeta}_{\mathscr{W}}$ are the same as the poles of the fractal zeta function $\tilde{\zeta}_{m_{0}}^{e}$.

Proof

i. For sufficienly large values of $m \in \mathbb{N}$, i.e., $m \geq m_{0}$, for some suitable integer $m_{0} \in \mathbb{N}$,

$$
\tilde{\zeta}_{m+1}^{e}(s)=\int_{0}^{\varepsilon_{m+1}^{m+1}} t^{s-3} \widetilde{\mathscr{V}}_{m+1}(t) d t
$$

Let us now note that

$$
\widetilde{\mathscr{V}}_{m}\left(\varepsilon_{m}^{m}\right)=\frac{\varepsilon_{m}^{m}}{2}\left(\mathscr{W}(0)+\mathscr{W}\left(2 \varepsilon_{m}^{m}\right)-2 \mathscr{W}\left(\varepsilon_{m}^{m}\right)\right)
$$

and

$$
\widetilde{\mathscr{V}}_{m+1}\left(\varepsilon_{m+1}^{m+1}\right)=\frac{\varepsilon_{m+1}^{m+1}}{2}\left(\mathscr{W}(0)+\mathscr{W}\left(2 \varepsilon_{m+1}^{m+1}\right)-2 \mathscr{W}\left(\varepsilon_{m+1}^{m+1}\right)\right) .
$$

Since

$$
\varepsilon_{m+1}^{m+1}=\frac{1}{N_{b}} \varepsilon_{m}^{m}
$$

and thanks to the scaling relation satisfied by \mathscr{W},

$$
\mathscr{W}\left(\varepsilon_{m+1}^{m+1}\right)=\mathscr{W}\left(\frac{1}{N_{b}} \varepsilon_{m}^{m}\right)=\lambda \mathscr{W}\left(\varepsilon_{m}^{m}\right)+\cos \left(2 \pi \varepsilon_{m}^{m}\right)
$$

and

$$
\mathscr{W}\left(2 \varepsilon_{m+1}^{m+1}\right)=\mathscr{W}\left(\frac{2}{N_{b}} \varepsilon_{m}^{m}\right)=\lambda \mathscr{W}\left(2 \varepsilon_{m}^{m}\right)+\cos \left(4 \pi \varepsilon_{m}^{m}\right)
$$

we can deduce that

$$
\widetilde{\mathscr{V}}_{m+1}\left(\varepsilon_{m+1}^{m+1}\right)=\frac{\lambda}{N_{b}} \mathscr{V}_{m}\left(N_{b} \varepsilon_{m+1}^{m+1}\right)+\frac{1}{N_{b}} \frac{N_{b} \varepsilon_{m+1}^{m+1}}{2}(1-\lambda)+\frac{N_{b} \varepsilon_{m+1}^{m+1}}{2}\left(\cos \left(4 \pi N_{b} \varepsilon_{m+1}^{m+1}\right)-2 \cos \left(2 \pi N_{b} \varepsilon_{m+1}^{m+1}\right)\right) .
$$

ii. We now assume that $\left(\mathscr{E}_{m}\right)$ holds for all $m \geq m_{0}$.
a. We denote by $\mathscr{P}\left(\tilde{\zeta}_{m}^{e}\right) \subset \mathbb{C}$ the set of poles of the zeta function $\tilde{\zeta}_{m}^{e}$, and by $\mathscr{P}\left(\tilde{\zeta}_{m_{0}}^{e}\right) \subset \mathbb{C}$ the set of poles of the zeta function $\tilde{\zeta}_{m_{0}}^{e}$.

We can note that

$$
\mathscr{P}\left(\tilde{\zeta}_{m_{0}}^{e}\right) \subset\{s \in \mathbb{C}, \mathscr{R} e(s)<2\} \subset\{s \in \mathbb{C}, \mathscr{R} e(s)<3\} .
$$

We set

$$
\begin{gathered}
\mathscr{U}^{+}=\left(\mathbb{C} \backslash \mathscr{P}\left(\tilde{S}_{m_{0}}^{e}\right)\right) \cap\{s \in \mathbb{C}, \mathscr{R} e(s)<1\} . \\
\left(\text { resp., } \mathscr{U}^{-}=\left(\mathbb{C} \backslash \mathscr{P}\left(\tilde{\zeta}_{m_{0}}^{e}\right)\right) \cap\{s \in \mathbb{C}, 1<\mathscr{R} e(s)<3\}\right)
\end{gathered}
$$

Then, the series

$$
\sum_{m \geq m_{0}}\left(N_{b}^{3-s} \tilde{\zeta}_{m}(s)+\frac{1}{2}(1-\lambda) N_{b}^{3-s} \frac{\varepsilon_{m}^{m(s-1)}}{s-1}+N_{b}^{3-s} \int_{0}^{\varepsilon_{m}^{m}} t^{s-2} \frac{1}{2 N_{b}} \mathscr{R} e\left(e^{i 4 \pi t}-2 e^{i 2 \pi t}\right) d t\right)
$$

is (locally) normally convergent, and, hence, uniformly convergent on

$$
\begin{gathered}
\mathscr{U}^{+}=\left(\mathbb{C} \backslash \mathscr{P}\left(\tilde{\zeta}_{m_{0}}\right)\right) \cap\{s \in \mathbb{C}, \mathscr{R} e(s)<1\} \\
\left(\text { resp., on } \mathscr{U}^{-}=\left(\mathbb{C} \backslash \mathscr{P}\left(\tilde{\zeta}_{m_{0}}\right)\right) \cap\{s \in \mathbb{C}, 1<\mathscr{R} e(s)<3\}\right)
\end{gathered}
$$

This ensures the existence of the limit fractal zeta function, i.e., the fractal zeta function associated with the Weierstrass Curve $\Gamma_{\mathscr{W}}$, given by

$$
\tilde{\zeta}_{\mathscr{W}}^{e}(s)=\lim _{m \rightarrow \infty} \tilde{\zeta}_{m}^{e}(s)=\sum_{m \geq m_{0}} N_{b}^{3-s} \tilde{\zeta}_{m}(s)+\frac{1}{2}(1-\lambda) N_{b}^{3-s} \frac{\varepsilon_{m}^{m(s-1)}}{s-1}+N_{b}^{3-s} \int_{0}^{\varepsilon_{m}^{m}} t^{s-2} \frac{1}{2 N_{b}} \mathscr{R} e\left(e^{i 4 \pi t}-2 e^{i 2 \pi t}\right) d t
$$

More precisely, if $\mathbb{P}^{1}(\mathbb{C})$ denotes the Riemann sphere, we can show that, for the chordal metric, defined, for all $\left(z_{1}, z_{2}\right) \in\left(\mathbb{P}^{1}(\mathbb{C})\right)^{2}$ by

$$
\left\|z_{1}, z_{2}\right\|=\frac{\left|z_{1}-z_{2}\right|}{\sqrt{1+\left|z_{1}^{2}\right|} \sqrt{1+\left|z_{2}^{2}\right|}}
$$

we have, thanks to the uniform convergence of the series,

$$
\lim _{m \rightarrow \infty}\left\|\tilde{\zeta}_{m}^{e}, \tilde{\zeta}_{\mathscr{W}}^{e}\right\|=0
$$

Indeed, for any $\eta>0$, we can choose $m_{0} \in \mathbb{N}^{\star}$ such that, for all $s \in \mathbb{P}^{1}(\mathbb{C})$, we have that

$$
\left|\tilde{\zeta}_{m}^{e}(s)-\tilde{\zeta}_{\mathscr{W}}^{e}(s)\right| \leq \eta,
$$

and, hence, for all $s \in \mathbb{P}^{1}(\mathbb{C})$,

$$
\left\|\tilde{\zeta}_{m}^{e}(s), \tilde{\zeta}_{\mathscr{W}}(s)\right\| \leq\left|\tilde{\zeta}_{m}^{e}(s)-\tilde{\zeta}_{\mathscr{W}}^{e}(s)\right| \leq \eta .
$$

The sum of this series, i.e., the (uniform) limit fractal zeta function $\tilde{\zeta}_{\mathscr{W}}^{e}$, is holomorphic on \mathscr{U}^{+}(resp., on \mathscr{U}^{-}). We can then deduce that, for all $m \geq m_{0}$, the zeta function $\tilde{\zeta}_{m}^{e}$ is meromorphic on $\mathbb{C} \backslash\{s \in \mathbb{C}, \mathscr{R} e(s)=1\}$, and that its poles in $\mathbb{C} \backslash\{s \in \mathbb{C}, \mathscr{R} e(s)=1\}$ are exactly the same as the poles of $\tilde{\zeta}_{m_{0}}^{e}$. Moreover, the results obtained in ${ }^{\mathrm{XXIII}}$ for the sequence of tube zeta functions associated with the Weierstrass IFD, which admit a meromorphic continuation to all of \mathbb{C}, obviously hold for the sequence of polyhedral tube zeta functions: hence, $\tilde{\zeta}_{m}^{e}$ is meromorphic on \mathbb{C}, and its poles belong to $\mathscr{P}\left(\tilde{\zeta}_{m_{0}}^{e}\right)$. Consequently, the poles of $\tilde{\zeta}_{m}^{e}$ are simple, and are the same as the poles of $\tilde{\zeta}_{m_{0}}^{e}$:

$$
\mathscr{P}\left(\tilde{\zeta}_{\boldsymbol{m}}^{e}\right)=\mathscr{P}\left(\tilde{\zeta}_{m_{0}}^{e}\right) \cdot
$$

[^5]b. Let us now denote by $\mathscr{P}\left(\tilde{\zeta}_{\mathscr{W}}^{e}\right) \subset \mathbb{C}$ the set of poles of the limit fractal zeta function $\tilde{\zeta}_{\mathscr{W}}^{e}$. By applying Theorem 3.14 given page 82 in ${ }^{\text {XXIV }}$, we then deduce that
$$
\lim _{m \rightarrow \infty} \mathscr{P}\left(\tilde{\zeta}_{m}^{e}\right)=\mathscr{P}\left(\tilde{\zeta}_{\mathscr{W}}^{e}\right) .
$$

Since, for all $m \geq m_{0}$,

$$
\mathscr{P}\left(\tilde{\zeta}_{m}^{e}\right)=\mathscr{P}\left(\tilde{\zeta}_{m_{0}}^{e}\right),
$$

this ensures that

$$
\mathscr{P}\left(\tilde{\zeta}_{\mathscr{W}}^{e}\right)=\mathscr{P}\left(\tilde{\zeta}_{m_{0}}^{e}\right) .
$$

Hence, as desired, the poles of the limit of the fractal zeta function $\tilde{\zeta}_{\mathscr{W}}^{e}$ are simple, and are the same as the poles of $\tilde{\zeta}_{m_{0}}^{e}$.

[^6]
From the $m^{\text {th }}$-Prefractal Polyhedral Zeta Function, to the $m^{\text {th }}$ Tube Zeta Function

Given $m \in \mathbb{N}$, the Lebesgue measure of the tubularneighborhood $\mathscr{D}\left(\Gamma_{\mathscr{W}_{m}}, \varepsilon_{m}^{m}\right)$ can be connected to the Lebesgue measure of the (m, ε_{m}^{m}) polygonal neighborhood $\mathscr{V}_{m}\left(\varepsilon_{m}^{m}\right)$ by means of the following relation,

$$
\mathscr{V}_{m}\left(\varepsilon_{m}^{m}\right)=\mathscr{V}_{m}^{\text {tube }}\left(\varepsilon_{m}^{m}\right)+\mathscr{R}_{m} \quad \text { where } \quad \mathscr{V}_{m}^{\text {tube }}\left(\varepsilon_{m}^{m}\right)=\mu_{\mathscr{L}}\left(\mathscr{D}\left(\Gamma_{\mathscr{W}_{m}}\right)\right),
$$

and where the sequence of remainders $\left(\mathscr{R}_{m}\right)_{m \geq m_{0}}$ (locally) uniformly converges to 0 .
This ensures, for the associated fractal zeta function

$$
s \mapsto \int_{0}^{\varepsilon_{m}^{m}} t^{s-3} \mathscr{R}_{m}(t) d t
$$

that

$$
\lim _{m \rightarrow \infty} \int_{0}^{\varepsilon_{m}^{m}} t^{s-3} \mathscr{R}_{m}(t) d t=0
$$

Theorem: Fractal Tube Formula for The Weierstrass

IFD

Given $m \in \mathbb{N}$ sufficiently large, the tubular volume $\mathscr{V}_{\mathscr{W}}\left(\varepsilon_{m}^{m}\right)$, or two-dimensional Lebesgue measure of the ε_{m}^{m}-neighborhood of the $m^{t h}$ prefractal graph $\Gamma_{\mathscr{W}_{m}}$,

$$
\mathscr{D}\left(\Gamma_{\mathscr{W}_{m}}, \varepsilon_{m}^{m}\right)=\left\{M=(x, y) \in \mathbb{R}^{2}, d\left(M, \Gamma_{\mathscr{W}_{m\left(\varepsilon_{m}^{m}\right)}^{m}}\right) \leq \varepsilon_{m}^{m}\right\}
$$

is given by

$$
\begin{aligned}
\mathscr{V}_{\mathscr{W}}\left(\varepsilon_{m}^{m}\right)= & \sum_{\ell \in \mathbb{Z}, k \in \mathbb{N}} f_{\ell, k, \text { Rectangles }}\left(\varepsilon_{m}^{m}\right)^{2-D_{\mathscr{W}}+k\left(2-D_{\mathscr{W}}\right)-i \ell p} \\
& +\sum_{\ell \in \mathbb{Z}, k \in \mathbb{N}}\left(f_{\ell, k, \text { wedges }, 1}\left(\varepsilon_{m}^{m}\right)^{3-i \ell p}+f_{\ell, k, \text { wedges }, 2}\left(\varepsilon_{m}^{m}\right)^{1+2 k-i \ell p}+f_{\ell, k, \text { wedges }, 3}\left(\varepsilon_{m}^{m}\right) 5\right. \\
& +\sum_{\ell \in \mathbb{Z}, k \in \mathbb{N}} f_{\ell, k, \text { triangles, parallelograms }}\left(\varepsilon_{m}^{m}\right)^{2-i \ell p}+\pi\left(\varepsilon_{m}^{m}\right)^{2}-\frac{\pi\left(\varepsilon_{m}^{m}\right)^{4}}{2},
\end{aligned}
$$

where the notation $f_{\ell, k, \text { Rectangles }}, f_{\ell, k, \text { wedges }, \ell}, 1 \leq \ell \leq 3$, and $f_{\ell, k, \text { triangles, parallelograms }}$, respectively account for the coefficients associated to the sums corresponding to the contribution of the rectangles, wedges, triangles and parallelograms.

Theorem: Local and Global Effective Tube Zeta Function for the Weierstrass IFD

The global tube zeta function associated to the Weierstrass IFDs, $\tilde{\zeta}_{\mathscr{W}}$, defined by analogy with the work in ${ }^{\mathrm{XXV}}$, admits a meromorphic continuation to all of \mathbb{C}, and is given, for any complex number s, by:

$$
\tilde{\zeta}_{\mathscr{W}}^{e}(s)=\lim _{m \rightarrow \infty} \tilde{\zeta}_{m, \mathscr{W}}^{e}(s),
$$

$\overline{\mathrm{XXV}} \mathrm{Michel} \mathrm{L}. \mathrm{Lapidus} ,\mathrm{Goran} \mathrm{Radunović} ,\mathrm{and} \mathrm{Darko} \mathrm{Žubrinić}$. Fractal Drums: Higher-Dimensional Theory of Complex Dimensions. Springer Monographs in Mathematics. Springer, New York, 2017, pp. xl +655.
where, for all $m \in \mathbb{N}$ sufficiently large, the local tube zeta function $\tilde{\zeta}_{m, \mathscr{W}}$ is given, for any complex number s, by

$$
\begin{aligned}
\tilde{\zeta}_{m, \mathscr{W}}^{e}(s)= & \sum_{\ell \in \mathbb{Z}, k \in \mathbb{N}} f_{\ell, k, \text { Rectangles }} \frac{\left(\varepsilon_{m}^{m}\right)^{s-D \mathscr{W}+k\left(2-D_{\mathscr{W}}\right)-i \ell p}}{s-D_{\mathscr{W}}+k\left(2-D_{\mathscr{W}}\right)-i \ell p} \\
& +\sum_{\ell \in \mathbb{Z}, k \in \mathbb{N}}\left\{f_{\ell, k, \text { wedges, } 1} \frac{\left(\varepsilon_{m}^{m}\right)^{s+1-i \ell p}}{s+1-i \ell p}+f_{\ell, k, \text { wedges }, 2} \frac{\left(\varepsilon_{m}^{m}\right)^{s+2 k-1-i \ell p}}{s+2 k-1-i \ell p}+f_{\ell, k, w}\right. \\
& +\sum_{\ell \in \mathbb{Z}, k \in \mathbb{N}} f_{\ell, k, \text { triangles, parallelograms } \frac{\left(\varepsilon_{m}^{m}\right)^{s-1-i \ell p}}{s-1-i \ell p}+\frac{\pi\left(\varepsilon_{m}^{m}\right)^{s}}{s}-\frac{\pi\left(\varepsilon_{m}^{m}\right)^{s+2}}{4(s+2)}}
\end{aligned}
$$

Corollary: Local and Global Distance Zeta Function for the Weierstrass Iterated Fractal Drums

According to the functional equation given in ${ }^{\mathrm{XXVI}}$ (Th. 2.2.1., page 112), the global effective distance zeta function $\zeta_{\mathscr{W}}^{e}$ is given, for any complex number s, by:

$$
\zeta_{\mathscr{W}}^{e}(s)=\lim _{m \rightarrow \infty} \zeta_{m, \mathscr{W}}^{e}(s),
$$

where, for all $m \in \mathbb{N}$ sufficiently large, the local distance zeta function $\zeta_{m, \mathscr{W}}^{e}$ is given, for any complex number s, by

$$
\zeta_{m, \not{W}(s)}^{e}=\left(\varepsilon_{m}^{m}\right)^{s-2} \mathscr{V}_{m}\left(\varepsilon_{m}^{m}\right)+(2-s) \tilde{\zeta}_{\mathscr{W}_{m}}(s) \quad \forall s \in \mathbb{C} .
$$

For all $m \in \mathbb{N}$ sufficiently large, the distance zeta function $\zeta_{m, \mathscr{W}}^{e}$ admits a meromorphic continuation to all of \mathbb{C}, given by the last equality just above.

[^7]
Remark

The Complex Dimensions - i.e., the poles of $\zeta_{m, \mathscr{W}}^{e}$, or, equivalently, of $\tilde{\zeta}_{m, \mathscr{W}}^{e}$ are independent of the choice of the parameter ε_{m}^{m}

$$
\text { (see the general theory developed in }{ }^{X X V I I} \text {) }
$$

This comes from the fact that, for $0<\varepsilon_{m, 1}^{m}<\varepsilon_{m, 2}^{m}$,

$$
\zeta_{m, \mathscr{W}, \varepsilon_{m, 1}^{m}}^{e}-\zeta_{m, \mathscr{W}, \varepsilon_{m, 2}^{m}}^{e} \text { is an entire function. }
$$

[^8]
Theorem: Complex Dimensions of the \mathscr{W} IFD

The possible Complex Dimensions of the Weierstrass IFD are all simple, and given as follows:

$$
\begin{gathered}
D_{\mathscr{W}}-k\left(2-D_{\mathscr{W}}\right)+i \ell p, \quad k \in \mathbb{N}, \ell \in \mathbb{Z}, \\
1-2 k+i \ell p, \quad k \in \mathbb{N}, \ell \in \mathbb{Z}, \text { along with }-2 \text { and } 0 .
\end{gathered}
$$

The one-periodic functions (with respect to $\ln _{N_{b}}\left(\varepsilon_{m}^{m}\right)^{-1}$), resp. associated to the values $D_{\mathscr{W}}-k\left(2-D_{\mathscr{W}}\right), k \in \mathbb{N}$, are nonconstant. In addition, all of their Fourier coefficients are nonzero, which implies that there are infinitely many Complex Dimensions that are nonreal, including those with maximal real part $D_{\mathscr{W}}$, which are the principal Complex Dimensions (see ${ }^{\times \times V I I I}$). They give rise to geometric oscillations with the largest amplitude, in the fractal tube formula.

[^9]
Complex Dimensions of the Weierstrass IFD

The nonzero Complex Dimensions are periodically distributed (with the same period $p=\frac{2 \pi}{\ln N_{b}}$, the oscillatory period of $\Gamma_{\mathscr{W}}$) along countably many vertical lines, with abscissae $\boldsymbol{D}_{\mathscr{W}}-\boldsymbol{k}\left(2-\boldsymbol{D}_{\mathscr{W}}\right)$ and $1-2 \boldsymbol{k}$, where $\boldsymbol{k} \in \mathbb{N}$ is arbitrary. In addition, 0 and -2 are Complex Dimensions of $\Gamma_{\mathscr{W}}$.

Theorem: Complex Dimensions of the Weierstrass Curve

The Complex Dimensions of The Weierstrass Curve are all simple, and given as follows:

$$
D_{\mathscr{W}}-k\left(2-D_{\mathscr{W}}\right)+i \ell p \quad, \quad \text { with } k \in \mathbb{N}, \ell \in \mathbb{Z},
$$

$1-2 k+i \ell p, \quad$ with $k \in \mathbb{N}, \ell \in \mathbb{Z}$, along with 0 and 1.

Proof

i. First, there exists an integer $m_{0} \in \mathbb{N}$ such that the poles of the limit effective fractal zeta function $\tilde{\zeta}_{\mathscr{W}}^{e}$, i.e., the fractal zeta function associated with the Weierstrass Curve $\Gamma_{\mathscr{W}}$, are the same as the poles of the fractal zeta function $\tilde{\zeta}_{m_{0}}^{e}$.
ii. Second, we have showed the poles of the limit fractal zeta function $\tilde{\zeta}_{\mathscr{W}}^{e}$ are also the same as the poles of the tube fractal zeta function $\tilde{\zeta}_{m_{0}}^{e, \text { tube }}$.
iii. We then dispose of the results obtained in ${ }^{\mathrm{XXX}}$, which give the values of the poles of the tube fractal zeta function $\tilde{\zeta}_{m_{0}}^{\text {e,tube }}$.
$\overline{\mathrm{xxx}}{ }_{\text {Claire David and Michel L. Lapidus. Weierstrass fractal drums }-I-A \text { glimpse of complex }}$ dimensions. 2022.

Connections with Real Life

Connections with Real Life

\leadsto Nature produces many fractal-like structures. Until now, the tools of fractal geometry have been little used to model the morphogenesis of these living forms.
\leadsto The acellular model organism Physarum polycephalum grows in a network and fractal branched way.

(a) P. polycephalum plasmodium. (b) Vein network. (C) A. Dussutour \& C. Oettmeier.
\leadsto The change of shape in Physarum polycephalum corresponds to a change of fractal (complex) dimensions (undergoing work with A. Dussutour, H. Henni, C. Godin).
\leadsto Just as in our mathematical theory.
\leadsto What is the growth law?
\leadsto Can we find the underlying variational principle?

Forthcoming: The Magnitude

\leadsto Counterpart of the (topological) Euler characteristic ${ }^{\mathrm{XXXI}}$.
\leadsto New method for numerically determining the Complex Dimensions of a fractal ${ }^{\mathrm{XXXII}}$.
\leadsto Also connected to the polyhedral measure.

```
XXXI}\mathrm{ Tom Leinster. "The magnitude of metric spaces". In: Documenta Mathematica 18 (2013),
pp. 857-905. ISSN: 1431-0635.
XXXIIClaire David and Michel L. Lapidus. Fractal Complex Dimensions ~ A Bridge to Magnitude.
2023.
```


[^0]: III James L. Kaplan, John Mallet-Paret, and James A. Yorke. "The Lyapunov dimension of a nowhere differentiable attracting torus". In: Ergodic Theory and Dynamical Systems 4 (1984), pp. 261-281.

 IV Feliks Przytycki and Mariusz Urbański. "On the Hausdorff dimension of some fractal sets". In: Studia Mathematica 93.2 (1989), pp. 155-186.
 ${ }^{\text {V Tian-You Hu and Ka-Sing Lau. "Fractal Dimensions and Singularities of the Weierstrass }}$ Type Functions". In: Transactions of the American Mathematical Society 335.2 (1993),
 pp. 649-665.
 ${ }^{\text {VI }}$ Claire David. "Bypassing dynamical systems: A simple way to get the box-counting dimension of the graph of the Weierstrass function". In: Proceedings of the International Geometry Center 11.2 (2018), pp. 1-16. URL:
 https://journals.onaft.edu.ua/index.php/geometry/article/view/1028.

[^1]: ${ }^{\text {VII }}$ Michel L. Lapidus, Goran Radunović, and Darko Žubrinić. Fractal Zeta Functions and Fractal Drums: Higher-Dimensional Theory of Complex Dimensions. Springer Monographs in Mathematics. Springer, New York, 2017, pp. $x 1+655$.

[^2]: ${ }^{\text {VIII }}$ Michel L. Lapidus and Machiel van Frankenhuijsen. Fractal Geometry and Number Theory: Complex Dimensions of Fractal Strings and Zeros of Zeta Functions. Birkhäuser Boston, Inc., Boston, MA, 2000, pp. xii 268.
 ${ }^{\mathrm{IX}}$ Michel L. Lapidus and Machiel van Frankenhuijsen. Fractal Geometry, Complex Dimensions and Zeta Functions: Geometry and Spectra of Fractal Strings. Springer Monographs in Mathematics. Springer, New York, second revised and enlarged edition (of the 2006 edition), 2013, pp. xxvi +567.
 $\mathrm{X}_{\text {Michel }}$ L. Lapidus, Goran Radunović, and Darko Žubrinić. Fractal Zeta Functions and Fractal Drums: Higher-Dimensional Theory of Complex Dimensions. Springer Monographs in Mathematics. Springer, New York, 2017, pp. $\times 1+655$.
 ${ }^{\mathrm{XI}}$ Michel L. Lapidus, Goran Radunović, and Darko Žubrinić. "Distance and tube zeta functions of fractals and arbitrary compact sets". In: Advances in Mathematics 307 (2017), pp. 1215-1267.
 ${ }^{\text {XII }}$ Michel L. Lapidus, Goran Radunović, and Darko Žubrinić. "Fractal tube formulas for compact sets and relative fractal drums: Oscillations, complex dimensions and fractality". In: Journal of Fractal Geometry. Mathematics of Fractals and Related Topics 5.1 (2018), pp. 1-119.

[^3]: ${ }^{\mathrm{xx}}$ Claire David and Michel L. Lapidus. Weierstrass fractal drums - I-A glimpse of complex dimensions. 2022.

[^4]: ${ }^{\text {XXI }}$ Claire David and Michel L. Lapidus. Iterated fractal drums ~ Some New Perspectives:

[^5]: $\overline{\text { XXIII Claire David and Michel L. Lapidus. Fractal Complex Dimensions and Cohomology of the }}$ Weierstrass Curve. 2022.

[^6]: $\overline{\mathrm{XXIV}}_{\text {Michel L. Lapidus and Machiel van Frankenhuijsen. Fractal Geometry, Complex Dimensions }}$ and Zeta Functions: Geometry and Spectra of Fractal Strings. Springer Monographs in Mathematics. Springer, New York, second revised and enlarged edition (of the 2006 edition), 2013, pp. xxvi +567.

[^7]: $\overline{\mathrm{XXVI}}_{\text {Michel }}$ L. Lapidus, Goran Radunović, and Darko Žubrinić. Fractal Zeta Functions and Fractal Drums: Higher-Dimensional Theory of Complex Dimensions. Springer Monographs in Mathematics. Springer, New York, 2017, pp. xl +655.

[^8]: $\overline{\mathrm{XXVII}}$ Michel L. Lapidus, Goran Radunović, and Darko Žubrinić. Fractal Zeta Functions and Fractal Drums: Higher-Dimensional Theory of Complex Dimensions. Springer Monographs in Mathematics. Springer, New York, 2017, pp. xl+655.

[^9]: XXVIM
 Michel L. Lapidus, Goran Radunović, and Darko Žubrinić. Fractal Zeta Functions and Fractal Drums: Higher-Dimensional Theory of Complex Dimensions. Springer Monographs in Mathematics. Springer, New York, 2017, pp. x|+655.
 ${ }^{\text {XXIX }}$ Claire David and Michel L. Lapidus. Weierstrass fractal drums - I-A glimpse of complex dimensions. 2022.

