Fractal zeta functions - a short overview

Goran Radunović

Bifurcations and Fractal Zeta Functions of Orbits

12.-13.5..2023.

Joint work with: Michel L. Lapidus, University of California, Riverside, Darko Žubrinić, University of Zagreb

> Supported by the Croatian Science Foundation, under the project UIP-2017-05-1020, PZS-2019-02-3055.

What is a fractal?

What is a fractal?

Figure: The middle-third Cantor set *C*.

What is a fractal?

Figure: The middle-third Cantor set *C*.

Figure: The Sierpiński gasket S.

• There are several definitions of fractal dimension.

- There are several definitions of fractal dimension.
- e.g., similarity dimension, Hausdorff dimension, box counting dimension, Minkowski dimension, etc.

Figure: dim_{*H*} $C = \dim_B C = \log_3 2$

- There are several definitions of fractal dimension.
- e.g., similarity dimension, Hausdorff dimension, box counting dimension, Minkowski dimension, etc.

 11 11 11 11	

Figure: dim_{*H*} $C = \dim_B C = \log_3 2$

Figure: dim_{*H*} $S = \dim_B S = \log_2 3 > 1$

- There are several definitions of fractal dimension.
- e.g., similarity dimension, Hausdorff dimension, box counting dimension, Minkowski dimension, etc.

Figure: dim_{*H*} $C = \dim_B C = \log_3 2$

Figure: dim_{*H*} $S = \dim_B S = \log_2 3 > 1$

 Mandelbrot: A set is fractal if its fractal dimension exceeds its topological dimension.

- There are several definitions of fractal dimension.
- e.g., similarity dimension, Hausdorff dimension, box counting dimension, Minkowski dimension, etc.

Figure: dim_{*H*} $C = \dim_B C = \log_3 2$

Figure: dim_{*H*} $S = \dim_B S = \log_2 3 > 1$

- Mandelbrot: A set is fractal if its fractal dimension exceeds its topological dimension.
- None of the above dimensions give a completely satisfactory definition of a fractal.

Figure: The Devil's staircase - graph of the Cantor function

Figure: The Devil's staircase - graph of the Cantor function

All of the known fractal dimensions are equal to 1, i.e., to its topological dimension.

Figure: Left: The 1/2-square fractal. Right: The 1/3-square fractal.

Figure: Left: The 1/2-square fractal. Right: The 1/3-square fractal.

The Hausdorff and Minkowski dimensions equal to 1 which is also their topological dimension.

The Minkowski content and dimension

$$\emptyset \neq A \subset \mathbb{R}^N$$

• δ -neighbourhood of *A*:

$$A_{\delta} = \{x \in \mathbb{R}^N : d(x, A) < \delta\}$$

■ *r*-dimensional Minkowski content of *A*:

$$\mathcal{M}^{r}(A) := \lim_{\delta \to 0^{+}} \frac{|A_{\delta}|}{\delta^{N-r}}$$

The Minkowski content and dimension

$$\emptyset \neq A \subset \mathbb{R}^N$$

• δ -neighbourhood of *A*:

$$A_{\delta} = \{x \in \mathbb{R}^N : d(x, A) < \delta\}$$

r-dimensional Minkowski content of A:

$$\mathcal{M}^{r}(A) := \lim_{\delta \to 0^{+}} \frac{|A_{\delta}|}{\delta^{N-r}}$$

Minkowski dimension of A: $\dim_B A = \inf\{r \in \mathbb{R} : \mathcal{M}^r(A) = 0\}$ $= \sup\{r \in \mathbb{R} : \mathcal{M}^r(A) = \infty\}$

• fractal string:
$$\mathcal{L} = (\ell_j)_{j \ge 1} \quad \ell_j \searrow 0$$

$$A_{\mathcal{L}} := \{a_k := \sum_{j \ge k} \ell_j : k \ge 1\}$$

geometric zeta function:

$$\zeta_{\mathcal{L}}(s) := \sum_{j=1}^{\infty} \ell_j^{s}$$

• fractal string:
$$\mathcal{L} = (\ell_j)_{j \ge 1} \mid \ell_j \searrow 0$$

$$A_{\mathcal{L}} := \{a_k := \sum_{j \ge k} \ell_j : k \ge 1\}$$

geometric zeta function: $\zeta_{\mathcal{L}}(s)$

$$\zeta_{\mathcal{L}}(s) := \sum_{j=1}^{\infty} \ell_j^{s}$$

Example (The Middle-Third Cantor String)

The lengths are $(1/3)^k$ each with multiplicity 2^{k-1} , i.e.,

• fractal string:
$$\mathcal{L} = (\ell_j)_{j \ge 1} | \ell_j \searrow 0$$

$$A_{\mathcal{L}} := \{a_k := \sum_{j \ge k} \ell_j : k \ge 1\}$$

• geometric zeta function: $\zeta_{\mathcal{L}}(s) := \sum \ell_j^s$

Example (The Middle-Third Cantor String)

The lengths are $(1/3)^k$ each with multiplicity 2^{k-1} , i.e.,

$$\zeta_{\mathcal{L}}(s) := \sum_{j=1}^{\infty} \ell_j{}^s = \sum_{k=1}^{\infty} 2^{k-1} \left(rac{1}{3^k}
ight)^s =$$

• fractal string:
$$\mathcal{L} = (\ell_j)_{j \ge 1} | \ell_j \searrow 0$$

$$A_{\mathcal{L}} := \{a_k := \sum_{j \ge k} \ell_j : k \ge 1\}$$

geometric zeta function: $\zeta_{\mathcal{L}}(s) := \sum_{i=1}^{\infty} \ell_i s^{s}$

Example (The Middle-Third Cantor String)

The lengths are $(1/3)^k$ each with multiplicity 2^{k-1} , i.e.,

$$\zeta_{\mathcal{L}}(s) := \sum_{j=1}^{\infty} \ell_j^{s} = \sum_{k=1}^{\infty} 2^{k-1} \left(\frac{1}{3^k}\right)^s = \frac{1}{3^s - 2}$$

• fractal string:
$$\mathcal{L} = (\ell_j)_{j \ge 1} \quad \ell_j \searrow 0$$

$$A_{\mathcal{L}} := \{a_k := \sum_{j \ge k} \ell_j : k \ge 1\}$$

geometric zeta function: $\zeta_{\mathcal{L}}(s) := \sum_{i=1}^{\infty} \ell_i s^{i}$

Example (The Middle-Third Cantor String)

The lengths are $(1/3)^k$ each with multiplicity 2^{k-1} , i.e.,

$$\zeta_{\mathcal{L}}(s) := \sum_{j=1}^{\infty} \ell_j^{s} = \sum_{k=1}^{\infty} 2^{k-1} \left(\frac{1}{3^k}\right)^s = \frac{1}{3^s - 2^s}$$

The set of complex dimensions: $\left\{ \log_3 2 + \frac{2\pi i \mathbb{Z}}{\log 3} \right\}$.

The Distance Zeta Function - generalization to higher dimensions [LaRaZu]

• the distance zeta function of $A \subset \mathbb{R}^N$:

$$\zeta_{\mathcal{A}}(s) := \int_{A_{\delta}} d(x, \mathcal{A})^{s-N} \, dx$$

The Distance Zeta Function - generalization to higher dimensions [LaRaZu]

• the distance zeta function of $A \subset \mathbb{R}^N$:

$$\zeta_A(s) := \int_{A_\delta} d(x,A)^{s-N} \, dx$$

• dependence on δ is inessential

The Distance Zeta Function - generalization to higher dimensions [LaRaZu]

• the distance zeta function of $A \subset \mathbb{R}^N$:

$$\zeta_A(s) := \int_{A_\delta} d(x,A)^{s-N} \, dx$$

 \blacksquare dependence on δ is inessential

$$\zeta_{A_{\mathcal{L}}}(s) = \frac{2^{1-s}}{s} \zeta_{\mathcal{L}}(s) + \frac{2\delta^s}{s}, \text{ given a large enough } \delta > 0$$

Theorem

(a) $\zeta_A(s)$ is holomorphic on {Re $s > \overline{\dim}_B A$ }, and

Theorem

(a) $\zeta_A(s)$ is holomorphic on {Re $s > \overline{\dim}_B A$ }, and (b) $\mathbb{R} \ni s < \overline{\dim}_B A \Rightarrow$ the integral defining $\zeta_A(s)$ diverges

Theorem

(a) $\zeta_A(s)$ is **holomorphic on** {Re $s > \overline{\dim}_B A$ }, and (b) $\mathbb{R} \ni s < \overline{\dim}_B A \Rightarrow$ the integral defining $\zeta_A(s)$ diverges (c) If $\exists D = \dim_B A < N$ and $\underline{\mathcal{M}}^D(A) > 0$, then $\zeta_A(x) \to +\infty$ when $\mathbb{R} \ni x \to D^+$

Theorem

(a) $\zeta_A(s)$ is **holomorphic on** {Re $s > \overline{\dim}_B A$ }, and (b) $\mathbb{R} \ni s < \overline{\dim}_B A \Rightarrow$ the integral defining $\zeta_A(s)$ diverges (c) If $\exists D = \dim_B A < N$ and $\underline{\mathcal{M}}^D(A) > 0$, then $\zeta_A(x) \to +\infty$ when $\mathbb{R} \ni x \to D^+$

Definition (Complex dimensions)

Assume ζ_A can be meromorphically extended to $W \subseteq \mathbb{C}$.

Theorem

(a) $\zeta_A(s)$ is **holomorphic on** {Re $s > \overline{\dim}_B A$ }, and (b) $\mathbb{R} \ni s < \overline{\dim}_B A \Rightarrow$ the integral defining $\zeta_A(s)$ diverges (c) If $\exists D = \dim_B A < N$ and $\underline{\mathcal{M}}^D(A) > 0$, then $\zeta_A(x) \to +\infty$ when $\mathbb{R} \ni x \to D^+$

Definition (Complex dimensions)

Assume ζ_A can be meromorphically extended to $W \subseteq \mathbb{C}$. The set of complex dimensions of A visible in W:

$$\mathcal{P}(\zeta_{\mathcal{A}}, \mathcal{W}) := \Big\{ \omega \in \mathcal{W} : \omega ext{ is a pole of } \zeta_{\mathcal{A}} \Big\}.$$

Complex dimensions of the Sierpiński gasket

$$\zeta_{\mathcal{A}}(s;\delta) = \frac{6(\sqrt{3})^{1-s}2^{-s}}{s(s-1)(2^s-3)} + 2\pi\frac{\delta^s}{s} + 3\frac{\delta^{s-1}}{s-1}$$

Complex dimensions of the Sierpiński gasket

$$\begin{split} \zeta_{\mathcal{A}}(s;\delta) &= \frac{6(\sqrt{3})^{1-s}2^{-s}}{s(s-1)(2^s-3)} + 2\pi \frac{\delta^s}{s} + 3\frac{\delta^{s-1}}{s-1} \\ \mathcal{P}(\zeta_{\mathcal{A}}) &= \{0,1\} \cup \left(\log_2 3 + \frac{2\pi}{\log 2}i\mathbb{Z}\right) \end{split}$$

Complex dimensions of the 1/2-square fractal

$$\zeta_{\mathcal{A}}(s) = \frac{2^{-s}}{s(s-1)(2^{s}-2)} + \frac{4}{s-1} + \frac{2\pi}{s},$$
(1)

Complex dimensions of the 1/2-square fractal

$$\zeta_{\mathcal{A}}(s) = \frac{2^{-s}}{s(s-1)(2^{s}-2)} + \frac{4}{s-1} + \frac{2\pi}{s},$$
(1)
$$\mathcal{P}(\zeta_{\mathcal{A}}) := \mathcal{P}(\zeta_{\mathcal{A}}, \mathbb{C}) = \{0\} \cup \left(1 + \frac{2\pi}{\log 2}i\mathbb{Z}\right).$$
(2)

Complex dimensions of the 1/3-square fractal

$$\zeta_{\mathcal{A}}(s) = \frac{2}{s(3^s - 2)} \left(\frac{6}{s - 1} + Z(s) \right) + \frac{4}{s - 1} + \frac{2\pi}{s}, \qquad (3)$$

Complex dimensions of the 1/3-square fractal

$$\zeta_{\mathcal{A}}(s) = \frac{2}{s(3^{s}-2)} \left(\frac{6}{s-1} + Z(s)\right) + \frac{4}{s-1} + \frac{2\pi}{s}, \qquad (3)$$

$$\mathcal{P}(\zeta_{\mathcal{A}}) := \mathcal{P}(\zeta_{\mathcal{A}}, \mathbb{C}) \subseteq \{0\} \cup \left(\log_3 2 + \frac{2\pi}{\log 3}i\mathbb{Z}\right) \cup \{1\}, \qquad (4)$$

Relative fractal drum (A, Ω)

Ø ≠ A ⊂ ℝ^N, Ω ⊂ ℝ^N, Lebesgue measurable, i.e., |Ω| < ∞
 upper *r*-dimensional Minkowski content of (A, Ω):

$$\overline{\mathcal{M}}^r(A,\Omega):=\limsup_{\delta o 0^+}rac{|A_\delta\cap\Omega|}{\delta^{N-r}}$$

■ upper Minkowski dimension of (A, Ω) : $\overline{\dim}_B(A, \Omega) = \inf\{r \in \mathbb{R} : \overline{\mathcal{M}}^r(A, \Omega) = 0\}$

Iower Minkowski content and dimension defined via liminf

Minkowski measurability

$$\underline{\dim}_B(A,\Omega) = \overline{\dim}_B(A,\Omega) \Rightarrow \exists \dim_B(A,\Omega)$$

• if $\exists D \in \mathbb{R}$ such that

$$0 < \underline{\mathcal{M}}^{D}(A, \Omega) = \overline{\mathcal{M}}^{D}(A, \Omega) < \infty,$$

we say (A, Ω) is **Minkowski measurable**; in that case $D = \dim_B(A, \Omega)$

if the above inequalities are not satisfied for D, we call (A, Ω)
 Minkowski degenerated

The relative distance zeta function

- (A, Ω) RFD in \mathbb{R}^N , $s \in \mathbb{C}$ and fix $\delta > 0$
- the distance zeta function of (A, Ω) :

$$\zeta_{\mathcal{A},\Omega}(s;\delta) := \int_{\mathcal{A}_{\delta}\cap\Omega} d(x,\mathcal{A})^{s-N} dx$$

• dependence on δ is not essential

The relative distance zeta function

- (A, Ω) RFD in \mathbb{R}^N , $s \in \mathbb{C}$ and fix $\delta > 0$
- the distance zeta function of (A, Ω) :

$$\zeta_{A,\Omega}(s;\delta) := \int_{A_{\delta}\cap\Omega} d(x,A)^{s-N} dx$$

- dependence on δ is not essential
- the complex dimensions of (A, Ω) are defined as the poles of ζ_{A,Ω}

The relative distance zeta function

- (A, Ω) RFD in \mathbb{R}^N , $s \in \mathbb{C}$ and fix $\delta > 0$
- the distance zeta function of (A, Ω) :

$$\zeta_{A,\Omega}(s;\delta) := \int_{A_{\delta}\cap\Omega} d(x,A)^{s-N} dx$$

- dependence on δ is not essential
- the complex dimensions of (A, Ω) are defined as the poles of ζ_{A,Ω}
- take Ω to be an open neighborhood of A in order to recover the classical ζ_A

The relative tube zeta function

$$(A, \Omega)$$
 an RFD in \mathbb{R}^N and fix $\delta > 0$

• the tube zeta function of (A, Ω) :

$$\widetilde{\zeta}_{\mathcal{A},\Omega}(s;\delta) := \int_0^{\delta} t^{s-N-1} |\mathcal{A}_t \cap \Omega| \, \mathrm{d}t$$

 \blacksquare dependence on δ is inessential

The relative tube zeta function

$$(A, \Omega)$$
 an RFD in \mathbb{R}^N and fix $\delta > 0$

• the tube zeta function of (A, Ω) :

$$\widetilde{\zeta}_{\mathcal{A},\Omega}(s;\delta) := \int_0^{\delta} t^{s-N-1} |\mathcal{A}_t \cap \Omega| \, \mathrm{d}t$$

- dependence on δ is inessential
- analogous holomorphicity theorem holds for $\widetilde{\zeta}_{A,\Omega}(s; \delta)$
- a functional equation connecting the two zeta functions:

$$\zeta_{\mathcal{A},\Omega}(\boldsymbol{s};\boldsymbol{\delta}) = \boldsymbol{\delta}^{\boldsymbol{s}-\boldsymbol{N}} | \mathcal{A}_{\boldsymbol{\delta}} \cap \Omega | + (\boldsymbol{N}-\boldsymbol{s}) \widetilde{\zeta}_{\mathcal{A},\Omega}(\boldsymbol{s};\boldsymbol{\delta})$$

An asymptotic (Steiner-type) formula for the **tube function** $t \mapsto |A_t \cap \Omega|$ as $t \to 0^+$ in terms of $\zeta_{A,\Omega}$.

An asymptotic (Steiner-type) formula for the **tube function** $t \mapsto |A_t \cap \Omega|$ as $t \to 0^+$ in terms of $\zeta_{A,\Omega}$.

Theorem (Simplified pointwise formula with error term)

• $\alpha < \dim_B(A, \Omega) < N$; $\zeta_{A,\Omega}$ satisfies suitable rational decay (*d*-languidity) on the half-plane $\mathbf{W} := \{\operatorname{Re} s > \alpha\}$, then:

$$|A_t \cap \Omega| = \sum_{\omega \in \mathcal{P}(\zeta_{A,\Omega}, \mathbf{W})} \operatorname{res}\left(\frac{t^{N-s}}{N-s}\zeta_{A,\Omega}(s), \omega\right) + O(t^{N-\alpha}).$$

An asymptotic (Steiner-type) formula for the **tube function** $t \mapsto |A_t \cap \Omega|$ as $t \to 0^+$ in terms of $\zeta_{A,\Omega}$.

Theorem (Simplified pointwise formula with error term)

• $\alpha < \dim_B(A, \Omega) < N$; $\zeta_{A,\Omega}$ satisfies suitable rational decay (*d*-languidity) on the half-plane $\mathbf{W} := \{\operatorname{Re} s > \alpha\}$, then:

$$|A_t \cap \Omega| = \sum_{\omega \in \mathcal{P}(\zeta_{A,\Omega}, \mathbf{W})} \operatorname{res}\left(rac{t^{N-s}}{N-s}\zeta_{A,\Omega}(s), \omega
ight) + O(t^{N-lpha}).$$

 if we allow polynomial growth of ζ_{A,Ω}, in general, we get a tube formula in the sense of Schwartz distributions

An asymptotic formula for the **tube function** $t \mapsto V_{A,\Omega}(t) := |A_t \cap \Omega| \text{ as } t \to 0^+ \text{ in terms of } \zeta_{A,\Omega}.$

Theorem (Case of simple poles)

• In case the the fractal zeta function has only simple poles:

$$V_{A,\Omega}(t) = \sum_{\omega \in \mathcal{P}(\zeta_{A,\Omega}, \mathbf{W})} \frac{t^{N-\omega}}{N-\omega} \operatorname{res}\left(\zeta_{A,\Omega}(s), \omega\right) + O(t^{N-\alpha}).$$

An asymptotic formula for the **tube function** $t \mapsto V_{A,\Omega}(t) := |A_t \cap \Omega| \text{ as } t \to 0^+ \text{ in terms of } \zeta_{A,\Omega}.$

Theorem (Case of simple poles)

• In case the the fractal zeta function has only simple poles:

$$V_{A,\Omega}(t) = \sum_{\omega \in \mathcal{P}(\zeta_{A,\Omega}, \mathbf{W})} \frac{t^{N-\omega}}{N-\omega} \operatorname{res}\left(\zeta_{A,\Omega}(s), \omega\right) + O(t^{N-\alpha}).$$

- a pole ω of order m generates terms of type $t^{N-\omega}(-\log t)^{k-1}$ for $k = 1, \dots, m$
- if $\omega \in \mathbb{C} \setminus \mathbb{R}$ then the term $t^{N-\omega} = t^{N-\operatorname{Re}\omega} e^{-i \operatorname{Im} \omega \log t}$ introduces oscillations in the order $t^{N-\operatorname{Re}\omega}$ which are multiplicative periodic with period $T = e^{2\pi/\operatorname{Im} \omega}$

Theorem (Minkowski measurability criterion)

- (A, Ω) is such that $\exists D := \dim_B(A, \Omega)$ and D < N
- $\zeta_{A,\Omega}$ is *d*-languid on a suitable domain $W \supset \{\operatorname{Re} s = D\}$

Then, the following is equivalent:

Theorem (Minkowski measurability criterion)

- (A, Ω) is such that $\exists D := \dim_B(A, \Omega)$ and D < N
- $\zeta_{A,\Omega}$ is *d*-languid on a suitable domain $W \supset \{\operatorname{Re} s = D\}$

Then, the following is equivalent:

(a) (A, Ω) is Minkowski measurable.

(b) D is the only pole of $\zeta_{A,\Omega}$ located on the critical line {Re s = D} and it is simple.

Theorem (Minkowski measurability criterion)

- (A, Ω) is such that $\exists D := \dim_B(A, \Omega)$ and D < N
- $\zeta_{A,\Omega}$ is *d*-languid on a suitable domain $W \supset \{\operatorname{Re} s = D\}$

Then, the following is equivalent:

(a) (A, Ω) is Minkowski measurable.

(b) D is the only pole of $\zeta_{A,\Omega}$ located on the critical line {Re s = D} and it is simple.

In that case:

$$\mathcal{M}^D(A,\Omega) = rac{\mathsf{res}(\zeta_{A,\Omega},D)}{N-D}$$

- (a) ⇒ (b) : from the distributional tube formula and the Uniqueness theorem for almost periodic distributions due to Schwartz
- (b) ⇒ (a) : a consequence of a Tauberian theorem due to
 Wiener and Pitt (conditions can be considerably weakened)
- the assumption D < N can be removed by appropriately embedding the RFD in \mathbb{R}^{N+1}

Figure: The Sierpiński gasket

• an example of a **self-similar fractal spray** with a generator *G* being an open equilateral triangle and with **scaling ratios** $r_1 = r_2 = r_3 = 1/2$

$$(A, \Omega) = (\partial G, G) \sqcup \bigsqcup_{j=1}^{3} (r_{j}A, r_{j}\Omega)$$

Fractal tube formula for The Sierpiński gasket

$$\zeta_{\mathcal{A}}(s;\delta) = \frac{6(\sqrt{3})^{1-s}2^{-s}}{s(s-1)(2^s-3)} + 2\pi\frac{\delta^s}{s} + 3\frac{\delta^{s-1}}{s-1}$$

By letting $\omega_k := \log_2 3 + \mathbf{p}k\mathbf{i}$ and $\mathbf{p} := 2\pi/\log 2$ we have that

Fractal tube formula for The Sierpiński gasket

$$\zeta_{\mathcal{A}}(s;\delta) = \frac{6(\sqrt{3})^{1-s}2^{-s}}{s(s-1)(2^s-3)} + 2\pi\frac{\delta^s}{s} + 3\frac{\delta^{s-1}}{s-1}$$

By letting $\omega_k := \log_2 3 + \mathbf{p}k\mathbf{i}$ and $\mathbf{p} := 2\pi/\log 2$ we have that

$$|A_t| = \sum_{\omega \in \mathcal{P}(\zeta_A)} \operatorname{res}\left(rac{t^{2-s}}{2-s}\zeta_A(s;\delta),\omega
ight)$$

Fractal tube formula for The Sierpiński gasket

$$\zeta_{\mathcal{A}}(s;\delta) = \frac{6(\sqrt{3})^{1-s}2^{-s}}{s(s-1)(2^s-3)} + 2\pi\frac{\delta^s}{s} + 3\frac{\delta^{s-1}}{s-1}$$

By letting $\omega_k := \log_2 3 + \mathbf{p} k \mathbf{i}$ and $\mathbf{p} := 2\pi/\log 2$ we have that

$$\begin{aligned} |A_t| &= \sum_{\omega \in \mathcal{P}(\zeta_A)} \operatorname{res}\left(\frac{t^{2-s}}{2-s}\zeta_A(s;\delta),\omega\right) \\ &= t^{2-\log_2 3} \frac{6\sqrt{3}}{\log 2} \sum_{k=-\infty}^{+\infty} \frac{(4\sqrt{3})^{-\omega_k} t^{-\mathbf{p}k\mathbf{i}}}{(2-\omega_k)(\omega_k-1)\omega_k} + \left(\frac{3\sqrt{3}}{2} + \pi\right) t^2, \\ &= t^{2-\log_2 3} H(\log_2 t) + \left(\frac{3\sqrt{3}}{2} + \pi\right) t^2 \end{aligned}$$

valid pointwise for all $t \in (0, 1/2\sqrt{3})$; $H \colon \mathbb{R} \to \mathbb{R}$ is 1-periodic, $0 < \min H = \underline{\mathcal{M}}^{2-\log_2 3}(A) < \overline{\mathcal{M}}^{2-\log_2 3}(A) = \max H < +\infty$

The fractal nest generated by the a-string

 $a > 0, \; a_j := j^{-a}, \; \ell_j := j^{-a} - (j+1)^{-a}, \; \Omega := B_{a_1}(0)$

$$\zeta_{A_a,\Omega}(s) = rac{2^{2-s}\pi}{s-1}\sum_{j=1}^{\infty}\ell_j^{s-1}(a_j+a_{j+1})$$

Fractal tube formula for the fractal nest generated by the *a*-string

Example

$$\mathcal{P}(\zeta_{\mathcal{A}_{a},\Omega})\subseteq\left\{1,rac{2}{a+1},rac{1}{a+1}
ight\}\cup\left\{-rac{m}{a+1}:m\in\mathbb{N}
ight\}$$

$$\begin{aligned} a \neq 1, \ D &:= \frac{2}{1+a} \Rightarrow \\ |(A_a)_t \cap \Omega| &= \frac{2^{2-D}D\pi}{(2-D)(D-1)} a^{D-1} t^{2-D} + 2\pi \left(2\zeta(a) - 1\right) t \\ &+ O\left(t^{2-\frac{1}{a+1}}\right), \ \text{as} \ t \to 0^+ \end{aligned}$$

Fractal tube formula for the fractal nest generated by the *a*-string

Example

$$\mathcal{P}(\zeta_{\mathcal{A}_{\boldsymbol{a}},\Omega})\subseteq\left\{1,rac{2}{\boldsymbol{a}+1},rac{1}{\boldsymbol{a}+1}
ight\}\cup\left\{-rac{m}{\boldsymbol{a}+1}:m\in\mathbb{N}
ight\}$$

$$\begin{aligned} a \neq 1, \ D &:= \frac{2}{1+a} \Rightarrow \\ |(A_a)_t \cap \Omega| &= \frac{2^{2-D}D\pi}{(2-D)(D-1)} a^{D-1} t^{2-D} + 2\pi \left(2\zeta(a) - 1\right) t \\ &+ O\left(t^{2-\frac{1}{a+1}}\right), \ \text{as} \ t \to 0^+ \\ |(A_1)_t \cap \Omega| &= \operatorname{res}\left(\frac{t^{2-s}}{2-s}\zeta_{A_1,\Omega}(s), 1\right) + o(t) \\ &= 2\pi t (-\log t) + \operatorname{const} \cdot t + o(t) \quad \text{as} \ t \to 0^+ \end{aligned}$$

Fractal tube formula for the fractal nest generated by the *a*-string

Example

$$\mathcal{P}(\zeta_{\mathcal{A}_{a},\Omega})\subseteq\left\{1,rac{2}{a+1},rac{1}{a+1}
ight\}\cup\left\{-rac{m}{a+1}:m\in\mathbb{N}
ight\}$$

$$\begin{aligned} a \neq 1, \ D &:= \frac{2}{1+a} \Rightarrow \\ |(A_a)_t \cap \Omega| &= \frac{2^{2-D}D\pi}{(2-D)(D-1)} a^{D-1} t^{2-D} + 2\pi \left(2\zeta(a) - 1\right) t \\ &+ O\left(t^{2-\frac{1}{a+1}}\right), \ \text{as} \ t \to 0^+ \\ |(A_1)_t \cap \Omega| &= \operatorname{res}\left(\frac{t^{2-s}}{2-s}\zeta_{A_1,\Omega}(s), 1\right) + o(t) \\ &= 2\pi t(-\log t) + \operatorname{const} \cdot t + o(t) \quad \text{as} \ t \to 0^+ \end{aligned}$$

• a pole ω of order m generates terms of type $t^{N-\omega}(-\log t)^{k-1}$ for $k = 1, \dots, m$ in the fractal tube formula

Some more examples

Figure: Left: The 1/2-square fractal. Right: The 1/3-square fractal.

The Hausdorff and Minkowski dimensions equal to 1 which is also their topological dimension.

Fractal tube formula for the 1/2-square fractal

$$\zeta_{\mathcal{A}}(s) = \frac{2^{-s}}{s(s-1)(2^{s}-2)} + \frac{4}{s-1} + \frac{2\pi}{s},$$
(5)

$$D(\zeta_A) = 1, \quad \mathcal{P}(\zeta_A) := \mathcal{P}(\zeta_A, \mathbb{C}) = \{0\} \cup \left(1 + \frac{2\pi}{\log 2}i\mathbb{Z}\right).$$
 (6)

Fractal tube formula for the 1/2-square fractal

$$\zeta_{\mathcal{A}}(s) = \frac{2^{-s}}{s(s-1)(2^{s}-2)} + \frac{4}{s-1} + \frac{2\pi}{s},$$
 (5)

$$D(\zeta_A) = 1, \quad \mathcal{P}(\zeta_A) := \mathcal{P}(\zeta_A, \mathbb{C}) = \{0\} \cup \left(1 + \frac{2\pi}{\log 2}i\mathbb{Z}\right).$$
 (6)

$$|A_t| = \sum_{\omega \in \mathcal{P}(\zeta_A)} \operatorname{res}\left(\frac{t^{2-s}}{2-s}\zeta_A(s),\omega\right) = \frac{1}{4\log 2}t\log t^{-1} + t G\left(\log_2(4t)^{-1}\right) + \frac{1+2\pi}{2}t^2,$$
(7)

valid for all $t \in (0, 1/2)$, where G is a nonconstant 1-periodic function on \mathbb{R} bounded away from zero and ∞ . The 1/2-square fractal is **critically fractal** in dimension 1.

Fractal tube formula for the 1/3-square fractal

$$\zeta_{A}(s) = \frac{2}{s(3^{s}-2)} \left(\frac{6}{s-1} + Z(s)\right) + \frac{4}{s-1} + \frac{2\pi}{s}, \quad (8)$$

$$\mathcal{P}(\zeta_{A}) := \mathcal{P}(\zeta_{A}, \mathbb{C}) \subseteq \{0\} \cup \left(\log_{3} 2 + \frac{2\pi}{\log 3}i\mathbb{Z}\right) \cup \{1\}, \quad (9)$$

$$|A_{t}| = \sum_{\omega \in \mathcal{P}(\zeta_{A})} \operatorname{res}\left(\frac{t^{2-s}}{2-s}\zeta_{A}, \omega\right)$$

$$= 16t + t^{2-\log_{3} 2}G\left(\log_{3}(3t)^{-1}\right) + \frac{12+\pi}{2}t^{2}.$$

(10)

valid for all $t \in (0, 1/\sqrt{2})$, where G is a nonconstant 1-periodic function on \mathbb{R} bounded away from zero and infinity. The 1/3-square fractal is **subcritically fractal** in dimension $\omega = \log_3 2 < \dim_B A = 1$.

Parabolic analytic germs (joint with Mardešić and Resman)

■ let f be an attracting germ of a diffeo. on ℝ at a fixed point 0 and let

$$\mathcal{O}_f(x_0):=\{f^{\circ n}(x_0): n\in\mathbb{N}\},\$$

be its orbit by f.

- Can one read the formal (or even analytic) class of f from the "fractality" of its one orbit?
- The tube function of the orbit:

$$V_f := V_{f,x_0} \colon \varepsilon \mapsto |\mathcal{O}_f(x_0)_{\varepsilon} \cap [0,x_0]|$$

Parabolic analytic germs

$f(x) = x - ax^{k+1} + o(x^{k+1}), \ a > 0, \ x \to 0.$ (11)

Formal change of variables in the class of formal power series x + x²R[[x]] reduces f to a normal form which is a time-one map of a simple vector field:

$$f_0(x) = \operatorname{Exp}\left(-\frac{x^{k+1}}{1-\rho x^k}\frac{d}{dx}\right) \text{.id}, \ k \in \mathbb{N}, \ \rho \in \mathbb{R}.$$
(12)

Parabolic germs of the type (12) are called *model diffeomorphisms*.

• the pair $(k, \rho) \in \mathbb{N} \times \mathbb{R}$ is called the *formal invariant* of f.

Arbitrary parabolic germ

$$f(x) = x - ax^{k+1} + o(x^{k+1}) \in \operatorname{Diff}(\mathbb{R}_+, 0)$$

Theorem (B MRR 2020, Complex dimensions for arbitrary parabolic orbits)

- $f \in \text{Diff}(\mathbb{R}_+, 0)$, of formal class (k, ρ) , $k \in \mathbb{N}$, $\rho \in \mathbb{R}$.
 - The distance zeta function ζ_f(s) can be meromorphically extended to C.
 - 2 In any open right half-plane $W_M := \{\operatorname{Re} s > 1 \frac{M}{k+1}\}$, where $M \in \mathbb{N}, M > k+2$, given as:

Theorem

For
$$s \in W_M := \{\operatorname{Re} s > 1 - \frac{M}{k+1}\}$$
:

$$egin{aligned} \zeta_f(s) =& (1-s)\sum_{m=1}^k rac{a_m}{s-\left(1-rac{m}{k+1}
ight)} + (1-s)\Big(rac{b_{k+1}(x_0)}{s} + rac{a_{
ho,k}}{s^2}\Big) \ &+ (1-s)\sum_{m=k+2}^{M-1}\sum_{p=0}^{\lfloorrac{m}{k}
floor+1} rac{(-1)^p p! \cdot c_{m,p}(x_0)}{\left(s-\left(1-rac{m}{k+1}
ight)
ight)^{p+1}} + g(s), \end{aligned}$$

g(s) holomorphic in W_M .

* the coefficients are real, depending on coeffs. of f and x_0 , as noted! * **higher-order poles** correspond to *logarithmic terms* in the asymptotic expansion of the tube function due to $\rho \neq 0$

Formal class from complex dimensions

Corollary (MRR Formal class of a parabolic germ from complex dimensions)

Let f be a parabolic germ $f(x) = x - ax^{k+1} + o(x^{k+1})$, a > 0from the formal class (k, ρ) . Then ζ_f is meromorphic in \mathbb{C} and the formal class is encoded in two complex dimensions:

1 the simple pole with largest real part, $\omega_1 = 1 - \frac{1}{k+1}$, and its residue:

$$\operatorname{Res}(\zeta_f(s),\omega_1) = \frac{a_1}{k+1} = \frac{2^{\frac{1}{k+1}}a^{-\frac{1}{k+1}}}{k}$$

2 the double pole with largest real part, $\omega_{k+1} = 0$, and the residue:

$$\operatorname{Res}(\boldsymbol{s}\cdot\zeta_f(\boldsymbol{s}),\omega_{k+1})=\boldsymbol{a}_{\rho,k}=2\rho\frac{k-1}{k}.$$

Model hyperbolic orbits

$$f_{a}(x) = ax, \ 0 < a < 1$$

$$\mathcal{O}_{f_{a}}(x_{0}) = \{x_{0}a^{n} : n \in \mathbb{N}_{0}\}$$

$$\mathcal{L}_{f_{a}} = \{\ell_{j} = f_{a}^{\circ j}(x_{0}) - f_{a}^{\circ (j+1)}(x_{0}) = x_{0}(1-a)a^{j} : j \in \mathbb{N}_{0}\}$$

$$\zeta_{f_{a}}(s) = \frac{2^{1-s}}{s} \sum_{j=0}^{\infty} \ell_{j}^{s} = \frac{2^{1-s}x_{0}^{s}(1-a)^{s}}{s} \cdot \frac{1}{1-a^{s}}$$

extends meromorphically to all of C from {Re s > 0}
double pole at s = 0 and simple poles at

$$s_k = rac{2k\pi i}{\log a}, \ k \in \mathbb{Z}$$

• $V_f(\varepsilon) = -\frac{2}{\log a}\varepsilon(-\log \varepsilon) + \varepsilon H\left(\log_a \frac{2\varepsilon}{x_0(1-a)}\right),$ $H: [0, +\infty) \to \mathbb{R}$ is 1-periodic and bounded

Parabolic orbits vs. hyperbolic orbits and fractality

!! parabolic case: oscillations of the coefficients can be smoothened by integration !! hyperbolic case: the oscillations are mulitiplicative periodic and

cannot be smoothened distributionally

(a) parabolic orbits: $\tau_{\varepsilon} \sim \varepsilon^{-\frac{1}{k+1}}$, $\frac{d}{d\varepsilon}\tau_{\varepsilon} \sim \varepsilon^{-1-\frac{1}{k+1}}$, where $1 + \frac{1}{k+1} > 1$

(b) hyperbolic orbits: $au_{arepsilon} \sim -\log arepsilon$, $rac{d}{darepsilon} au_{arepsilon} \sim -arepsilon^{-1}$

The consequence:

(*) in the parabolic case **no oscillatory coefficients in the distributional expansion** (seen in poles of zeta function as **no non-real complex dimensions**)

(*) in the hyperbolic case **oscillatory coefficients remain** (seen in poles of zeta function as **purely imaginary complex dimensions**, similarly as for Cantor sets (LF 2013, LRZ 2017)

? who is fractal ?

$$A \subseteq \mathbb{R}^{d} \text{ compact } |A| = 0, \text{ then by [HugLastWeil]:}$$
$$|A_{\varepsilon}| = \sum_{i=0}^{d-1} \omega_{d-i} \int_{0}^{\varepsilon} t^{d-i-1} \int_{\mathcal{N}(A)} \mathbb{1}\{t < \delta(A, x, u)\} \mu_{i}(A; d(x, u)) dt.$$

$$\begin{split} A &\subseteq \mathbb{R}^d \text{ compact } |A| = 0, \text{ then by [HugLastWeil]:} \\ |A_{\varepsilon}| &= \sum_{i=0}^{d-1} \omega_{d-i} \int_0^{\varepsilon} t^{d-i-1} \int_{N(A)} \mathbb{1}\{t < \delta(A, x, u)\} \mu_i(A; d(x, u)) dt. \\ &\qquad N(A) \subseteq A \times \mathbb{S}^{d-1} \quad \text{the generalized normal bundle} \end{split}$$

$$\delta(A, x, u) =$$
 the reach at $(x, u) \in N(A)$

$$A \subseteq \mathbb{R}^{d} \text{ compact } |A| = 0, \text{ then by [HugLastWeil]:}$$
$$|A_{\varepsilon}| = \sum_{i=0}^{d-1} \omega_{d-i} \int_{0}^{\varepsilon} t^{d-i-1} \int_{N(A)} \mathbb{1}\{t < \delta(A, x, u)\} \mu_{i}(A; d(x, u)) dt.$$
$$N(A) \subseteq A \times \mathbb{S}^{d-1} \quad \text{the generalized normal bundle}$$
$$\delta(A, x, u) = \quad \text{the reach at} \quad (x, u) \in N(A)$$

 $\mu_i(A; \cdot) =$ the i-th support measure on N(A)

$$A \subseteq \mathbb{R}^{d} \text{ compact } |A| = 0, \text{ then by [HugLastWeil]:}$$
$$|A_{\varepsilon}| = \sum_{i=0}^{d-1} \omega_{d-i} \int_{0}^{\varepsilon} t^{d-i-1} \int_{N(A)} \mathbb{1}\{t < \delta(A, x, u)\} \mu_{i}(A; d(x, u)) dt.$$
$$N(A) \subseteq A \times \mathbb{S}^{d-1} \quad \text{the generalized normal bundle}$$
$$\delta(A, x, u) = \quad \text{the reach at} \quad (x, u) \in N(A)$$
$$\mu_{i}(A; \cdot) = \quad \text{the i-th support measure on} \quad N(A)$$
$$\zeta_{A,i}(s) := \int_{N(A)} (\delta(A, x, u) \wedge \varepsilon)^{s-i} \mu_{i}(A; d(x, u)),$$

$$A \subseteq \mathbb{R}^{d} \text{ compact } |A| = 0, \text{ then by [HugLastWeil]:}$$
$$|A_{\varepsilon}| = \sum_{i=0}^{d-1} \omega_{d-i} \int_{0}^{\varepsilon} t^{d-i-1} \int_{N(A)} \mathbb{1}\{t < \delta(A, x, u)\} \mu_{i}(A; d(x, u)) dt.$$
$$N(A) \subseteq A \times \mathbb{S}^{d-1} \quad \text{the generalized normal bundle}$$
$$\delta(A, x, u) = \quad \text{the reach at} \quad (x, u) \in N(A)$$
$$\mu_{i}(A; \cdot) = \quad \text{the i-th support measure on} \quad N(A)$$
$$\zeta_{A,i}(s) := \int_{N(A)} (\delta(A, x, u) \wedge \varepsilon)^{s-i} \mu_{i}(A; d(x, u)),$$
$$\zeta_{A}(s) = \sum_{i=0}^{d-1} \frac{\omega_{d-i}}{s-i} \zeta_{A,i}(s),$$

Further research directions

- Extending the notion of complex dimensions to include logarithmic and "mixed" singularities points and connecting them with various gauge functions appearing in fractal tube formulas
- Obtaining corresponding tube formulas and gauge-Minkowski measurability criteria (with M. Lapidus)
- Applying the theory to problems from dynamical systems (with M. Resman, P. Mardesic, M. Klimes, R. Huzak)
- Connecting the theory with *fractal curvatures* and *support measures* (with S. Winter)

- D. Hug, G. Last and W. Weil, A local Steiner-type formula for general closed sets and applications, *Math. Zeitschrift* 246 (2004), 237–272.
- M. L. Lapidus and M. van Frankenhuijsen, *Fractality, Complex Dimensions, and Zeta Functions: Geometry and Spectra of Fractal Strings*, second revised and enlarged edition (of the 2006 edn.), Springer Monographs in Mathematics, Springer, New York, 2013.
- M. L. Lapidus, G. Radunović and D. Žubrinić, *Fractal Zeta Functions and Fractal Drums: Higher-Dimensional Theory of Complex Dimensions*, Springer Monographs in Mathematics, New York, 2017.
 - Mardešić, Radunović, Resman, Fractal zeta functions of orbits of parabolic diffeomorphisms, Analysis and Math. Physics, (2022) 12:114