# Fractal zeta functions - a short overview 

## Goran Radunović

Bifurcations and Fractal Zeta Functions of Orbits

$$
\text { 12.-13.5.. } 2023 .
$$

Joint work with:
Michel L. Lapidus, University of California, Riverside, Darko Žubrinić, University of Zagreb

## What is a fractal?

## What is a fractal?



Figure: The middle-third Cantor set $C$.

## What is a fractal?



Figure: The middle-third Cantor set $C$.


Figure: The Sierpiński gasket $S$.

## Fractal dimensions

- There are several definitions of fractal dimension.


## Fractal dimensions

- There are several definitions of fractal dimension.

■ e.g., similarity dimension, Hausdorff dimension, box counting dimension, Minkowski dimension, etc.


Figure: $\operatorname{dim}_{H} C=\operatorname{dim}_{B} C=\log _{3} 2$

## Fractal dimensions

- There are several definitions of fractal dimension.
- e.g., similarity dimension, Hausdorff dimension, box counting dimension, Minkowski dimension, etc.


Figure: $\operatorname{dim}_{H} C=\operatorname{dim}_{B} C=\log _{3} 2$


Figure: $\operatorname{dim}_{H} S=\operatorname{dim}_{B} S=\log _{2} 3>1$

## Fractal dimensions

- There are several definitions of fractal dimension.
- e.g., similarity dimension, Hausdorff dimension, box counting dimension, Minkowski dimension, etc.


Figure: $\operatorname{dim}_{H} C=\operatorname{dim}_{B} C=\log _{3} 2$


Figure: $\operatorname{dim}_{H} S=\operatorname{dim}_{B} S=\log _{2} 3>1$

- Mandelbrot: A set is fractal if its fractal dimension exceeds its topological dimension.


## Fractal dimensions

- There are several definitions of fractal dimension.
- e.g., similarity dimension, Hausdorff dimension, box counting dimension, Minkowski dimension, etc.


Figure: $\operatorname{dim}_{H} C=\operatorname{dim}_{B} C=\log _{3} 2$


Figure: $\operatorname{dim}_{H} S=\operatorname{dim}_{B} S=\log _{2} 3>1$

- Mandelbrot: A set is fractal if its fractal dimension exceeds its topological dimension.
■ None of the above dimensions give a completely satisfactory definition of a fractal.


## Some more examples



Figure: The Devil's staircase - graph of the Cantor function

## Some more examples



Figure: The Devil's staircase - graph of the Cantor function

All of the known fractal dimensions are equal to 1 , i.e., to its topological dimension.

## Some more examples



Figure: Left: The $1 / 2$-square fractal. Right: The $1 / 3$-square fractal.

## Some more examples



Figure: Left: The $1 / 2$-square fractal. Right: The $1 / 3$-square fractal.

The Hausdorff and Minkowski dimensions equal to 1 which is also their topological dimension.

## The Minkowski content and dimension

- $\emptyset \neq A \subset \mathbb{R}^{N}$
- $\delta$-neighbourhood of $A$ :

$$
A_{\delta}=\left\{x \in \mathbb{R}^{N}: d(x, A)<\delta\right\}
$$

- r-dimensional Minkowski content of $A$ :

$$
\mathcal{M}^{r}(A):=\lim _{\delta \rightarrow 0^{+}} \frac{\left|A_{\delta}\right|}{\delta^{N-r}}
$$

## The Minkowski content and dimension

- $\emptyset \neq A \subset \mathbb{R}^{N}$
- $\delta$-neighbourhood of $A$ :

$$
A_{\delta}=\left\{x \in \mathbb{R}^{N}: d(x, A)<\delta\right\}
$$

- r-dimensional Minkowski content of $A$ :

$$
\mathcal{M}^{r}(A):=\lim _{\delta \rightarrow 0^{+}} \frac{\left|A_{\delta}\right|}{\delta^{N-r}}
$$

- Minkowski dimension of $A$ :

$$
\begin{aligned}
\operatorname{dim}_{B} A & =\inf \left\{r \in \mathbb{R}: \mathcal{M}^{r}(A)=0\right\} \\
& =\sup \left\{r \in \mathbb{R}: \mathcal{M}^{r}(A)=\infty\right\}
\end{aligned}
$$

## The geometric zeta function [Lapidus, van Frankenhuijsen, Pomerance, Maier]

- fractal string: $\mathcal{L}=\left(\ell_{j}\right)_{j \geq 1} \quad \ell_{j} \searrow 0$
- $A_{\mathcal{L}}:=\left\{a_{k}:=\sum_{j \geq k} \ell_{j}: k \geq 1\right\}$
- geometric zeta function: $\zeta_{\mathcal{L}}(s):=\sum_{j=1}^{\infty} \ell_{j}{ }^{s}$


## The geometric zeta function [Lapidus, van Frankenhuijsen, Pomerance, Maier]

■ fractal string: $\mathcal{L}=\left(\ell_{j}\right)_{j \geq 1} \quad \ell_{j} \searrow 0$

- $A_{\mathcal{L}}:=\left\{a_{k}:=\sum_{j \geq k} \ell_{j}: k \geq 1\right\}$
- geometric zeta function: $\zeta_{\mathcal{L}}(s):=\sum_{j=1}^{\infty} \ell_{j}{ }^{s}$


## Example (The Middle-Third Cantor String)

The lengths are $(1 / 3)^{k}$ each with multiplicity $2^{k-1}$, i.e.,

## The geometric zeta function [Lapidus, van Frankenhuijsen, Pomerance, Maier]

- fractal string: $\mathcal{L}=\left(\ell_{j}\right)_{j \geq 1} \quad \ell_{j} \searrow 0$
- $A_{\mathcal{L}}:=\left\{a_{k}:=\sum_{j \geq k} \ell_{j}: k \geq 1\right\}$
- geometric zeta function: $\zeta_{\mathcal{L}}(s):=\sum_{j=1}^{\infty} \ell_{j}{ }^{s}$


## Example (The Middle-Third Cantor String)

The lengths are $(1 / 3)^{k}$ each with multiplicity $2^{k-1}$, i.e.,

$$
\zeta_{\mathcal{L}}(s):=\sum_{j=1}^{\infty} \ell_{j}{ }^{s}=\sum_{k=1}^{\infty} 2^{k-1}\left(\frac{1}{3^{k}}\right)^{s}=
$$

## The geometric zeta function [Lapidus, van Frankenhuijsen, Pomerance, Maier]

- fractal string: $\mathcal{L}=\left(\ell_{j}\right)_{j \geq 1} \quad \ell_{j} \searrow 0$
- $A_{\mathcal{L}}:=\left\{a_{k}:=\sum_{j \geq k} \ell_{j}: k \geq 1\right\}$
- geometric zeta function: $\zeta_{\mathcal{L}}(s):=\sum_{j=1}^{\infty} \ell_{j}{ }^{s}$


## Example (The Middle-Third Cantor String)

The lengths are $(1 / 3)^{k}$ each with multiplicity $2^{k-1}$, i.e.,

$$
\zeta_{\mathcal{L}}(s):=\sum_{j=1}^{\infty} \ell_{j}^{s}=\sum_{k=1}^{\infty} 2^{k-1}\left(\frac{1}{3^{k}}\right)^{s}=\frac{1}{3^{s}-2} .
$$

## The geometric zeta function [Lapidus, van Frankenhuijsen, Pomerance, Maier]

- fractal string: $\mathcal{L}=\left(\ell_{j}\right)_{j \geq 1} \quad \ell_{j} \searrow 0$
- $A_{\mathcal{L}}:=\left\{a_{k}:=\sum_{j \geq k} \ell_{j}: k \geq 1\right\}$
- geometric zeta function: $\zeta_{\mathcal{L}}(s):=\sum_{j=1}^{\infty} \ell_{j}{ }^{s}$


## Example (The Middle-Third Cantor String)

The lengths are $(1 / 3)^{k}$ each with multiplicity $2^{k-1}$, i.e.,

$$
\zeta_{\mathcal{L}}(s):=\sum_{j=1}^{\infty} \ell_{j}^{s}=\sum_{k=1}^{\infty} 2^{k-1}\left(\frac{1}{3^{k}}\right)^{s}=\frac{1}{3^{s}-2} .
$$

The set of complex dimensions: $\left\{\log _{3} 2+\frac{2 \pi \mathrm{i} \mathbb{Z}}{\log 3}\right\}$.

## The Distance Zeta Function - generalization to higher dimensions [LaRaZu]

- the distance zeta function of $A \subset \mathbb{R}^{N}$ :

$$
\zeta_{A}(s):=\int_{A_{\delta}} d(x, A)^{s-N} d x
$$

## The Distance Zeta Function - generalization to higher dimensions [LaRaZu]

- the distance zeta function of $A \subset \mathbb{R}^{N}$ :

$$
\zeta_{A}(s):=\int_{A_{\delta}} d(x, A)^{s-N} d x
$$

- dependence on $\delta$ is inessential


## The Distance Zeta Function - generalization to higher dimensions [LaRaZu]

- the distance zeta function of $A \subset \mathbb{R}^{N}$ :

$$
\zeta_{A}(s):=\int_{A_{\delta}} d(x, A)^{s-N} d x
$$

- dependence on $\delta$ is inessential
- $\zeta_{A_{\mathcal{L}}}(s)=\frac{2^{1-s}}{s} \zeta_{\mathcal{L}}(s)+\frac{2 \delta^{s}}{s}$, given a large enough $\delta>0$


## Holomorphicity theorem

## Theorem

(a) $\zeta_{A}(s)$ is holomorphic on $\left\{\operatorname{Re} s>\overline{\operatorname{dim}}_{B} A\right\}$, and

## Holomorphicity theorem

## Theorem

(a) $\zeta_{A}(s)$ is holomorphic on $\left\{\operatorname{Re} s>\overline{\operatorname{dim}}_{B} A\right\}$, and
(b) $\mathbb{R} \ni s<\overline{\operatorname{dim}}_{B} A \Rightarrow$ the integral defining $\zeta_{A}(s)$ diverges

## Holomorphicity theorem

## Theorem

(a) $\zeta_{A}(s)$ is holomorphic on $\left\{\operatorname{Re} s>\overline{\operatorname{dim}}_{B} A\right\}$, and
(b) $\mathbb{R} \ni s<\overline{\operatorname{dim}}_{B} A \Rightarrow$ the integral defining $\zeta_{A}(s)$ diverges
(c) If $\exists D=\operatorname{dim}_{B} A<N$ and $\underline{\mathcal{M}}^{D}(A)>0$, then
$\zeta_{A}(x) \rightarrow+\infty$ when $\mathbb{R} \ni x \rightarrow D^{+}$

## Holomorphicity theorem

## Theorem

(a) $\zeta_{A}(s)$ is holomorphic on $\left\{\operatorname{Re} s>\overline{\operatorname{dim}}_{B} A\right\}$, and
(b) $\mathbb{R} \ni s<\overline{\operatorname{dim}}_{B} A \Rightarrow$ the integral defining $\zeta_{A}(s)$ diverges
(c) If $\exists D=\operatorname{dim}_{B} A<N$ and $\underline{\mathcal{M}}^{D}(A)>0$, then
$\zeta_{A}(x) \rightarrow+\infty$ when $\mathbb{R} \ni x \rightarrow D^{+}$

## Definition (Complex dimensions)

Assume $\zeta_{A}$ can be meromorphically extended to $W \subseteq \mathbb{C}$.

## Holomorphicity theorem

## Theorem

(a) $\zeta_{A}(s)$ is holomorphic on $\left\{\operatorname{Re} s>\overline{\operatorname{dim}}_{B} A\right\}$, and
(b) $\mathbb{R} \ni s<\overline{\operatorname{dim}}_{B} A \Rightarrow$ the integral defining $\zeta_{A}(s)$ diverges
(c) If $\exists D=\operatorname{dim}_{B} A<N$ and $\underline{\mathcal{M}}^{D}(A)>0$, then
$\zeta_{A}(x) \rightarrow+\infty$ when $\mathbb{R} \ni x \rightarrow D^{+}$

## Definition (Complex dimensions)

Assume $\zeta_{A}$ can be meromorphically extended to $W \subseteq \mathbb{C}$. The set of complex dimensions of $A$ visible in $W$ :

$$
\mathcal{P}\left(\zeta_{A}, W\right):=\left\{\omega \in W: \omega \text { is a pole of } \zeta_{A}\right\} .
$$

## Complex dimensions of the Sierpiński gasket



## Example

$$
\zeta_{A}(s ; \delta)=\frac{6(\sqrt{3})^{1-s} 2^{-s}}{s(s-1)\left(2^{s}-3\right)}+2 \pi \frac{\delta^{s}}{s}+3 \frac{\delta^{s-1}}{s-1}
$$

## Complex dimensions of the Sierpiński gasket



## Example

$$
\begin{gathered}
\zeta_{A}(s ; \delta)=\frac{6(\sqrt{3})^{1-s} 2^{-s}}{s(s-1)\left(2^{s}-3\right)}+2 \pi \frac{\delta^{s}}{s}+3 \frac{\delta^{s-1}}{s-1} \\
\mathcal{P}\left(\zeta_{A}\right)=\{0,1\} \cup\left(\log _{2} 3+\frac{2 \pi}{\log 2} \mathrm{i} \mathbb{Z}\right)
\end{gathered}
$$

## Complex dimensions of the $1 / 2$-square fractal



Example

$$
\begin{equation*}
\zeta_{A}(s)=\frac{2^{-s}}{s(s-1)\left(2^{s}-2\right)}+\frac{4}{s-1}+\frac{2 \pi}{s} \tag{1}
\end{equation*}
$$

## Complex dimensions of the $1 / 2$-square fractal



Example

$$
\begin{align*}
\zeta_{A}(s) & =\frac{2^{-s}}{s(s-1)\left(2^{s}-2\right)}+\frac{4}{s-1}+\frac{2 \pi}{s}  \tag{1}\\
\mathcal{P}\left(\zeta_{A}\right) & :=\mathcal{P}\left(\zeta_{A}, \mathbb{C}\right)=\{0\} \cup\left(1+\frac{2 \pi}{\log 2} \mathrm{i} \mathbb{Z}\right) . \tag{2}
\end{align*}
$$

## Complex dimensions of the $1 / 3$-square fractal



Example

$$
\begin{equation*}
\zeta_{A}(s)=\frac{2}{s\left(3^{s}-2\right)}\left(\frac{6}{s-1}+Z(s)\right)+\frac{4}{s-1}+\frac{2 \pi}{s} \tag{3}
\end{equation*}
$$

## Complex dimensions of the $1 / 3$-square fractal



Example

$$
\begin{gather*}
\zeta_{A}(s)=\frac{2}{s\left(3^{s}-2\right)}\left(\frac{6}{s-1}+Z(s)\right)+\frac{4}{s-1}+\frac{2 \pi}{s},  \tag{3}\\
\mathcal{P}\left(\zeta_{A}\right):=\mathcal{P}\left(\zeta_{A}, \mathbb{C}\right) \subseteq\{0\} \cup\left(\log _{3} 2+\frac{2 \pi}{\log 3} \mathrm{i} \mathbb{Z}\right) \cup\{1\}, \tag{4}
\end{gather*}
$$

## Relative fractal drum $(A, \Omega)$

■ $\emptyset \neq A \subset \mathbb{R}^{N}, \Omega \subset \mathbb{R}^{N}$, Lebesgue measurable, i.e., $|\Omega|<\infty$
■ upper r-dimensional Minkowski content of $(A, \Omega)$ :

$$
\overline{\mathcal{M}}^{r}(A, \Omega):=\underset{\delta \rightarrow 0^{+}}{\limsup } \frac{\left|A_{\delta} \cap \Omega\right|}{\delta^{N-r}}
$$

- upper Minkowski dimension of $(A, \Omega)$ :

$$
\overline{\operatorname{dim}}_{B}(A, \Omega)=\inf \left\{r \in \mathbb{R}: \overline{\mathcal{M}}^{r}(A, \Omega)=0\right\}
$$

- lower Minkowski content and dimension defined via liminf


## Minkowski measurability

- $\operatorname{dim}_{B}(A, \Omega)=\overline{\operatorname{dim}}_{B}(A, \Omega) \Rightarrow \exists \operatorname{dim}_{B}(A, \Omega)$
- if $\exists D \in \mathbb{R}$ such that

$$
0<\underline{\mathcal{M}}^{D}(A, \Omega)=\overline{\mathcal{M}}^{D}(A, \Omega)<\infty,
$$

we say $(A, \Omega)$ is Minkowski measurable; in that case

$$
D=\operatorname{dim}_{B}(A, \Omega)
$$

- if the above inequalities are not satisfied for $D$, we call $(A, \Omega)$ Minkowski degenerated


## The relative distance zeta function

- ( $A, \Omega$ ) RFD in $\mathbb{R}^{N}, s \in \mathbb{C}$ and fix $\delta>0$
- the distance zeta function of $(A, \Omega)$ :

$$
\zeta_{A, \Omega}(s ; \delta):=\int_{A_{\delta} \cap \Omega} d(x, A)^{s-N} d x
$$

- dependence on $\delta$ is not essential


## The relative distance zeta function

- ( $A, \Omega$ ) RFD in $\mathbb{R}^{N}, s \in \mathbb{C}$ and fix $\delta>0$
- the distance zeta function of $(A, \Omega)$ :

$$
\zeta_{A, \Omega}(s ; \delta):=\int_{A_{\delta} \cap \Omega} d(x, A)^{s-N} d x
$$

- dependence on $\delta$ is not essential
- the complex dimensions of $(A, \Omega)$ are defined as the poles of $\zeta_{A, \Omega}$


## The relative distance zeta function

- ( $A, \Omega$ ) RFD in $\mathbb{R}^{N}, s \in \mathbb{C}$ and fix $\delta>0$
- the distance zeta function of $(A, \Omega)$ :

$$
\zeta_{A, \Omega}(s ; \delta):=\int_{A_{\delta} \cap \Omega} d(x, A)^{s-N} d x
$$

- dependence on $\delta$ is not essential
- the complex dimensions of $(A, \Omega)$ are defined as the poles of $\zeta_{A, \Omega}$
- take $\Omega$ to be an open neighborhood of $A$ in order to recover the classical $\zeta_{A}$


## The relative tube zeta function

$(A, \Omega)$ an RFD in $\mathbb{R}^{N}$ and fix $\delta>0$

- the tube zeta function of $(A, \Omega)$ :

$$
\widetilde{\zeta}_{A, \Omega}(s ; \delta):=\int_{0}^{\delta} t^{s-N-1}\left|A_{t} \cap \Omega\right| \mathrm{d} t
$$

- dependence on $\delta$ is inessential


## The relative tube zeta function

$(A, \Omega)$ an RFD in $\mathbb{R}^{N}$ and fix $\delta>0$

- the tube zeta function of $(A, \Omega)$ :

$$
\widetilde{\zeta}_{A, \Omega}(s ; \delta):=\int_{0}^{\delta} t^{s-N-1}\left|A_{t} \cap \Omega\right| \mathrm{d} t
$$

- dependence on $\delta$ is inessential
- analogous holomorphicity theorem holds for $\widetilde{\zeta}_{A, \Omega}(s ; \delta)$
- a functional equation connecting the two zeta functions:

$$
\zeta_{A, \Omega}(s ; \delta)=\delta^{s-N}\left|A_{\delta} \cap \Omega\right|+(N-s) \widetilde{\zeta}_{A, \Omega}(s ; \delta)
$$

## Fractal tube formulas for relative fractal drums

- An asymptotic (Steiner-type) formula for the tube function $t \mapsto\left|A_{t} \cap \Omega\right|$ as $t \rightarrow 0^{+}$in terms of $\zeta_{A, \Omega}$.


## Fractal tube formulas for relative fractal drums

■ An asymptotic (Steiner-type) formula for the tube function $t \mapsto\left|A_{t} \cap \Omega\right|$ as $t \rightarrow 0^{+}$in terms of $\zeta_{A, \Omega}$.

Theorem (Simplified pointwise formula with error term)

- $\alpha<\operatorname{dim}_{B}(A, \Omega)<N ; \zeta_{A, \Omega}$ satisfies suitable rational decay ( $d$-languidity) on the half-plane $\mathbf{W}:=\{\operatorname{Re} s>\alpha\}$, then:

$$
\left|A_{t} \cap \Omega\right|=\sum_{\omega \in \mathcal{P}\left(\zeta_{A, \Omega}, \mathbf{W}\right)} \operatorname{res}\left(\frac{t^{N-s}}{N-s} \zeta_{A, \Omega}(s), \omega\right)+O\left(t^{N-\alpha}\right)
$$

## Fractal tube formulas for relative fractal drums

■ An asymptotic (Steiner-type) formula for the tube function $t \mapsto\left|A_{t} \cap \Omega\right|$ as $t \rightarrow 0^{+}$in terms of $\zeta_{A, \Omega}$.

## Theorem (Simplified pointwise formula with error term)

- $\alpha<\operatorname{dim}_{B}(A, \Omega)<N ; \zeta_{A, \Omega}$ satisfies suitable rational decay ( $d$-languidity) on the half-plane $\mathbf{W}:=\{\operatorname{Re} s>\alpha\}$, then:

$$
\left|A_{t} \cap \Omega\right|=\sum_{\omega \in \mathcal{P}\left(\zeta_{A, \Omega}, \mathbf{W}\right)} \operatorname{res}\left(\frac{t^{N-s}}{N-s} \zeta_{A, \Omega}(s), \omega\right)+O\left(t^{N-\alpha}\right)
$$

■ if we allow polynomial growth of $\zeta_{A, \Omega}$, in general, we get a tube formula in the sense of Schwartz distributions

## Fractal tube formulas for relative fractal drums

- An asymptotic formula for the tube function

$$
t \mapsto V_{A, \Omega}(t):=\left|A_{t} \cap \Omega\right| \text { as } t \rightarrow 0^{+} \text {in terms of } \zeta_{A, \Omega} .
$$

## Theorem (Case of simple poles)

- In case the the fractal zeta function has only simple poles:

$$
V_{A, \Omega}(t)=\sum_{\omega \in \mathcal{P}\left(\zeta_{A, \Omega}, \mathbf{W}\right)} \frac{t^{N-\omega}}{N-\omega} \operatorname{res}\left(\zeta_{A, \Omega}(s), \omega\right)+O\left(t^{N-\alpha}\right)
$$

## Fractal tube formulas for relative fractal drums

- An asymptotic formula for the tube function

$$
t \mapsto V_{A, \Omega}(t):=\left|A_{t} \cap \Omega\right| \text { as } t \rightarrow 0^{+} \text {in terms of } \zeta_{A, \Omega} .
$$

## Theorem (Case of simple poles)

- In case the the fractal zeta function has only simple poles:

$$
V_{A, \Omega}(t)=\sum_{\omega \in \mathcal{P}\left(\zeta_{A, \Omega}, \mathbf{W}\right)} \frac{t^{N-\omega}}{N-\omega} \operatorname{res}\left(\zeta_{A, \Omega}(s), \omega\right)+O\left(t^{N-\alpha}\right) .
$$

- a pole $\omega$ of order $m$ generates terms of type

$$
t^{N-\omega}(-\log t)^{k-1} \text { for } k=1, \ldots, m
$$

- if $\omega \in \mathbb{C} \backslash \mathbb{R}$ then the term $t^{N-\omega}=t^{N-R e} \omega \mathrm{e}^{-\mathrm{i} \operatorname{lm} \omega \log t}$ introduces oscillations in the order $t^{N-\operatorname{Re} \omega}$ which are multiplicative periodic with period $T=\mathrm{e}^{2 \pi / \operatorname{Im} \omega}$


## The Minkowski measurability criterion

## Theorem (Minkowski measurability criterion)

- $(A, \Omega)$ is such that $\exists D:=\operatorname{dim}_{B}(A, \Omega)$ and $D<N$
- $\zeta_{A, \Omega}$ is $d$-languid on a suitable domain $W \supset\{\operatorname{Re} s=D\}$

Then, the following is equivalent:

## The Minkowski measurability criterion

## Theorem (Minkowski measurability criterion)

- $(A, \Omega)$ is such that $\exists D:=\operatorname{dim}_{B}(A, \Omega)$ and $D<N$
- $\zeta_{A, \Omega}$ is d-languid on a suitable domain $W \supset\{\operatorname{Re} s=D\}$

Then, the following is equivalent:
(a) $(A, \Omega)$ is Minkowski measurable.
(b) $D$ is the only pole of $\zeta_{A, \Omega}$ located on the critical line $\{\operatorname{Re} s=D\}$ and it is simple.

## The Minkowski measurability criterion

## Theorem (Minkowski measurability criterion)

- $(A, \Omega)$ is such that $\exists D:=\operatorname{dim}_{B}(A, \Omega)$ and $D<N$
- $\zeta_{A, \Omega}$ is d-languid on a suitable domain $W \supset\{\operatorname{Re} s=D\}$

Then, the following is equivalent:
(a) $(A, \Omega)$ is Minkowski measurable.
(b) $D$ is the only pole of $\zeta_{A, \Omega}$ located on the critical line $\{\operatorname{Re} s=D\}$ and it is simple.
In that case:

$$
\mathcal{M}^{D}(A, \Omega)=\frac{\operatorname{res}\left(\zeta_{A, \Omega}, D\right)}{N-D}
$$

## The Minkowski measurability criterion

- (a) $\Rightarrow(b)$ : from the distributional tube formula and the Uniqueness theorem for almost periodic distributions due to Schwartz
- $(b) \Rightarrow(a)$ : a consequence of a Tauberian theorem due to Wiener and Pitt (conditions can be considerably weakened)
- the assumption $D<N$ can be removed by appropriately embedding the RFD in $\mathbb{R}^{N+1}$


## Figure: The Sierpiński gasket



- an example of a self-similar fractal spray with a generator $G$ being an open equilateral triangle and with scaling ratios $r_{1}=r_{2}=r_{3}=1 / 2$

■ $(A, \Omega)=(\partial G, G) \sqcup \bigsqcup_{j=1}^{3}\left(r_{j} A, r_{j} \Omega\right)$

## Fractal tube formula for The Sierpiński gasket

$$
\zeta_{A}(s ; \delta)=\frac{6(\sqrt{3})^{1-s} 2^{-s}}{s(s-1)\left(2^{s}-3\right)}+2 \pi \frac{\delta^{s}}{s}+3 \frac{\delta^{s-1}}{s-1}
$$

By letting $\omega_{k}:=\log _{2} 3+\mathbf{p} k$ i and $\mathbf{p}:=2 \pi / \log 2$ we have that

## Fractal tube formula for The Sierpiński gasket

$$
\zeta_{A}(s ; \delta)=\frac{6(\sqrt{3})^{1-s} 2^{-s}}{s(s-1)\left(2^{s}-3\right)}+2 \pi \frac{\delta^{s}}{s}+3 \frac{\delta^{s-1}}{s-1}
$$

By letting $\omega_{k}:=\log _{2} 3+\mathbf{p} k$ i and $\mathbf{p}:=2 \pi / \log 2$ we have that

$$
\left|A_{t}\right|=\sum_{\omega \in \mathcal{P}\left(\zeta_{A}\right)} \operatorname{res}\left(\frac{t^{2-s}}{2-s} \zeta_{A}(s ; \delta), \omega\right)
$$

## Fractal tube formula for The Sierpiński gasket

$$
\zeta_{A}(s ; \delta)=\frac{6(\sqrt{3})^{1-s} 2^{-s}}{s(s-1)\left(2^{s}-3\right)}+2 \pi \frac{\delta^{s}}{s}+3 \frac{\delta^{s-1}}{s-1}
$$

By letting $\omega_{k}:=\log _{2} 3+\mathbf{p} k \dot{1}$ and $\mathbf{p}:=2 \pi / \log 2$ we have that

$$
\begin{aligned}
\left|A_{t}\right| & =\sum_{\omega \in \mathcal{P}\left(\zeta_{A}\right)} \operatorname{res}\left(\frac{t^{2-s}}{2-s} \zeta_{A}(s ; \delta), \omega\right) \\
& =t^{2-\log _{2} 3} \frac{6 \sqrt{3}}{\log 2} \sum_{k=-\infty}^{+\infty} \frac{(4 \sqrt{3})^{-\omega_{k}} t^{-\mathbf{p} k \mathrm{i}}}{\left(2-\omega_{k}\right)\left(\omega_{k}-1\right) \omega_{k}}+\left(\frac{3 \sqrt{3}}{2}+\pi\right) t^{2}, \\
& =t^{2-\log _{2} 3} H\left(\log _{2} t\right)+\left(\frac{3 \sqrt{3}}{2}+\pi\right) t^{2}
\end{aligned}
$$

valid pointwise for all $t \in(0,1 / 2 \sqrt{3}) ; H: \mathbb{R} \rightarrow \mathbb{R}$ is 1-periodic,

$$
0<\min H=\underline{\mathcal{M}}^{2-\log _{2} 3}(A)<\overline{\mathcal{M}}^{2-\log _{2} 3}(A)=\max H<+\infty
$$

## The fractal nest generated by the a-string



## Fractal tube formula for the fractal nest generated by the a-string

## Example

$$
\mathcal{P}\left(\zeta_{A_{a}, \Omega}\right) \subseteq\left\{1, \frac{2}{a+1}, \frac{1}{a+1}\right\} \cup\left\{-\frac{m}{a+1}: m \in \mathbb{N}\right\}
$$

$$
\begin{aligned}
& a \neq 1, D:=\frac{2}{1+a} \\
& \Rightarrow \begin{aligned}
\left|\left(A_{a}\right)_{t} \cap \Omega\right|= & \frac{2^{2-D} D \pi}{(2-D)(D-1)} a^{D-1} t^{2-D}+2 \pi(2 \zeta(a)-1) t \\
& +O\left(t^{2-\frac{1}{a+1}}\right), \text { as } t \rightarrow 0^{+}
\end{aligned}
\end{aligned}
$$

## Fractal tube formula for the fractal nest generated by the a-string

## Example

$$
\mathcal{P}\left(\zeta_{A_{a}, \Omega}\right) \subseteq\left\{1, \frac{2}{a+1}, \frac{1}{a+1}\right\} \cup\left\{-\frac{m}{a+1}: m \in \mathbb{N}\right\}
$$

$$
\begin{aligned}
& a \neq 1, D:=\frac{2}{1+a}
\end{aligned} \begin{aligned}
\left|\left(A_{a}\right)_{t} \cap \Omega\right|= & \frac{2^{2-D} D \pi}{(2-D)(D-1)} a^{D-1} t^{2-D}+2 \pi(2 \zeta(a)-1) t \\
& +O\left(t^{2-\frac{1}{a+1}}\right), \text { as } t \rightarrow 0^{+} \\
\left|\left(A_{1}\right)_{t} \cap \Omega\right|= & \operatorname{res}\left(\frac{t^{2-s}}{2-s} \zeta_{A_{1}, \Omega}(s), 1\right)+o(t) \\
= & 2 \pi t(-\log t)+\mathrm{const} \cdot t+o(t) \quad \text { as } t \rightarrow 0^{+}
\end{aligned}
$$

## Fractal tube formula for the fractal nest generated by the a-string

## Example

$$
\mathcal{P}\left(\zeta_{A_{a}, \Omega}\right) \subseteq\left\{1, \frac{2}{a+1}, \frac{1}{a+1}\right\} \cup\left\{-\frac{m}{a+1}: m \in \mathbb{N}\right\}
$$

$$
\begin{aligned}
& a \neq 1, D:=\frac{2}{1+a} \Rightarrow \\
& \begin{aligned}
\left|\left(A_{a}\right)_{t} \cap \Omega\right|= & \frac{2^{2-D} D \pi}{(2-D)(D-1)} a^{D-1} t^{2-D}+2 \pi(2 \zeta(a)-1) t \\
& +O\left(t^{2-\frac{1}{a+1}}\right), \text { as } t \rightarrow 0^{+} \\
\left|\left(A_{1}\right)_{t} \cap \Omega\right|= & \text { res }\left(\frac{t^{2-s}}{2-s} \zeta_{A_{1}, \Omega}(s), 1\right)+o(t) \\
& =2 \pi t(-\log t)+\text { const } \cdot t+o(t) \quad \text { as } t \rightarrow 0^{+}
\end{aligned}
\end{aligned}
$$

- a pole $\omega$ of order $m$ generates terms of type $t^{N-\omega}(-\log t)^{k-1}$ for $k=1, \ldots, m$ in the fractal tube formula


## Some more examples



Figure: Left: The $1 / 2$-square fractal. Right: The $1 / 3$-square fractal.

The Hausdorff and Minkowski dimensions equal to 1 which is also their topological dimension.

## Fractal tube formula for the $1 / 2$-square fractal

$$
\begin{gather*}
\zeta_{A}(s)=\frac{2^{-s}}{s(s-1)\left(2^{s}-2\right)}+\frac{4}{s-1}+\frac{2 \pi}{s},  \tag{5}\\
D\left(\zeta_{A}\right)=1, \quad \mathcal{P}\left(\zeta_{A}\right):=\mathcal{P}\left(\zeta_{A}, \mathbb{C}\right)=\{0\} \cup\left(1+\frac{2 \pi}{\log 2} \mathrm{i} \mathbb{Z}\right) . \tag{6}
\end{gather*}
$$

## Fractal tube formula for the $1 / 2$-square fractal

$$
\begin{gather*}
\zeta_{A}(s)=\frac{2^{-s}}{s(s-1)\left(2^{s}-2\right)}+\frac{4}{s-1}+\frac{2 \pi}{s}  \tag{5}\\
D\left(\zeta_{A}\right)=1, \quad \mathcal{P}\left(\zeta_{A}\right):=\mathcal{P}\left(\zeta_{A}, \mathbb{C}\right)=\{0\} \cup\left(1+\frac{2 \pi}{\log 2} \dot{\mathrm{i}} \mathbb{Z}\right) .  \tag{6}\\
\left|A_{t}\right|=\sum_{\omega \in \mathcal{P}\left(\zeta_{A}\right)} \operatorname{res}\left(\frac{t^{2-s}}{2-s} \zeta_{A}(s), \omega\right)  \tag{7}\\
=\frac{1}{4 \log 2} t \log t^{-1}+t G\left(\log _{2}(4 t)^{-1}\right)+\frac{1+2 \pi}{2} t^{2}
\end{gather*}
$$

valid for all $t \in(0,1 / 2)$, where $G$ is a nonconstant 1-periodic function on $\mathbb{R}$ bounded away from zero and $\infty$.
The $1 / 2$-square fractal is critically fractal in dimension 1.

## Fractal tube formula for the $1 / 3$-square fractal

$$
\begin{align*}
\zeta_{A}(s) & =\frac{2}{s\left(3^{s}-2\right)}\left(\frac{6}{s-1}+Z(s)\right)+\frac{4}{s-1}+\frac{2 \pi}{s},  \tag{8}\\
\mathcal{P}\left(\zeta_{A}\right): & =\mathcal{P}\left(\zeta_{A}, \mathbb{C}\right) \subseteq\{0\} \cup\left(\log _{3} 2+\frac{2 \pi}{\log 3} \dot{\mathbb{Z}} \mathbb{Z}\right) \cup\{1\},  \tag{9}\\
\left|A_{t}\right| & =\sum_{\omega \in \mathcal{P}\left(\zeta_{A}\right)} \operatorname{res}\left(\frac{t^{2-s}}{2-s} \zeta_{A}, \omega\right)  \tag{10}\\
& =16 t+t^{2-\log _{3} 2} G\left(\log _{3}(3 t)^{-1}\right)+\frac{12+\pi}{2} t^{2} .
\end{align*}
$$

valid for all $t \in(0,1 / \sqrt{2})$, where $G$ is a nonconstant 1-periodic function on $\mathbb{R}$ bounded away from zero and infinity.
The $1 / 3$-square fractal is subcritically fractal in dimension $\omega=\log _{3} 2<\operatorname{dim}_{B} A=1$.

## Parabolic analytic germs (joint with Mardešić and Resman)

- let $f$ be an attracting germ of a diffeo. on $\mathbb{R}$ at a fixed point 0 and let

$$
\mathcal{O}_{f}\left(x_{0}\right):=\left\{f^{\circ n}\left(x_{0}\right): n \in \mathbb{N}\right\}
$$

be its orbit by $f$.

■ Can one read the formal (or even analytic) class of $f$ from the "fractality" of its one orbit?

- The tube function of the orbit:

$$
V_{f}:=V_{f, x_{0}}: \varepsilon \mapsto\left|\mathcal{O}_{f}\left(x_{0}\right)_{\varepsilon} \cap\left[0, x_{0}\right]\right|
$$

## Parabolic analytic germs

$$
\begin{equation*}
f(x)=x-a x^{k+1}+o\left(x^{k+1}\right), a>0, x \rightarrow 0 \tag{11}
\end{equation*}
$$

■ Formal change of variables in the class of formal power series $x+x^{2} \mathbb{R}[[x]]$ reduces $f$ to a normal form which is a time-one map of a simple vector field:

$$
\begin{equation*}
f_{0}(x)=\operatorname{Exp}\left(-\frac{x^{k+1}}{1-\rho x^{k}} \frac{d}{d x}\right) . \text { id, } k \in \mathbb{N}, \rho \in \mathbb{R} \tag{12}
\end{equation*}
$$

Parabolic germs of the type (12) are called model diffeomorphisms.
■ the pair $(k, \rho) \in \mathbb{N} \times \mathbb{R}$ is called the formal invariant of $f$.

## Fractal zeta function for the general non-model case

Arbitrary parabolic germ

$$
f(x)=x-a x^{k+1}+o\left(x^{k+1}\right) \in \operatorname{Diff}\left(\mathbb{R}_{+}, 0\right)
$$

Theorem (B MRR 2020, Complex dimensions for arbitrary parabolic orbits)
$f \in \operatorname{Diff}\left(\mathbb{R}_{+}, 0\right)$, of formal class $(k, \rho), k \in \mathbb{N}, \rho \in \mathbb{R}$.
1 The distance zeta function $\zeta_{f}(s)$ can be meromorphically extended to $\mathbb{C}$.
2 In any open right half-plane $W_{M}:=\left\{\operatorname{Re} s>1-\frac{M}{k+1}\right\}$, where $M \in \mathbb{N}, M>k+2$, given as:

## Theorem

For $s \in W_{M}:=\left\{\operatorname{Re} s>1-\frac{M}{k+1}\right\}:$

$$
\begin{aligned}
\zeta_{f}(s) & =(1-s) \sum_{m=1}^{k} \frac{a_{m}}{s-\left(1-\frac{m}{k+1}\right)}+(1-s)\left(\frac{b_{k+1}\left(x_{0}\right)}{s}+\frac{a_{\rho, k}}{s^{2}}\right) \\
& +(1-s) \sum_{m=k+2}^{M-1} \sum_{p=0}^{\left\lfloor\frac{m}{k}\right\rfloor+1} \frac{(-1)^{p} p!\cdot c_{m, p}\left(x_{0}\right)}{\left(s-\left(1-\frac{m}{k+1}\right)\right)^{p+1}}+g(s)
\end{aligned}
$$

$g(s)$ holomorphic in $W_{M}$.

* the coefficients are real, depending on coeffs. of $f$ and $x_{0}$, as noted! * higher-order poles correspond to logarithmic terms in the asymptotic expansion of the tube function due to $\rho \neq 0$


## Formal class from complex dimensions

## Corollary (MRR Formal class of a parabolic germ from complex dimensions)

Let $f$ be a parabolic germ $f(x)=x-a x^{k+1}+o\left(x^{k+1}\right)$, $a>0$ from the formal class $(k, \rho)$. Then $\zeta_{f}$ is meromorphic in $\mathbb{C}$ and the formal class is encoded in two complex dimensions:
1 the simple pole with largest real part, $\omega_{1}=1-\frac{1}{k+1}$, and its residue:

$$
\operatorname{Res}\left(\zeta_{f}(s), \omega_{1}\right)=\frac{a_{1}}{k+1}=\frac{2^{\frac{1}{k+1}} a^{-\frac{1}{k+1}}}{k}
$$

2 the double pole with largest real part, $\omega_{k+1}=0$, and the residue:

$$
\operatorname{Res}\left(s \cdot \zeta_{f}(s), \omega_{k+1}\right)=a_{\rho, k}=2 \rho \frac{k-1}{k}
$$

## Model hyperbolic orbits

- $f_{a}(x)=a x, 0<a<1$
- $\mathcal{O}_{f_{\mathrm{a}}}\left(x_{0}\right)=\left\{x_{0} a^{n}: n \in \mathbb{N}_{0}\right\}$
- $\mathcal{L}_{f_{a}}=\left\{\ell_{j}=f_{a}^{\circ j}\left(x_{0}\right)-f_{a}^{\circ(j+1)}\left(x_{0}\right)=x_{0}(1-a) a^{j}: j \in \mathbb{N}_{0}\right\}$

$$
\zeta_{f_{a}}(s)=\frac{2^{1-s}}{s} \sum_{j=0}^{\infty} \ell_{j}^{s}=\frac{2^{1-s} x_{0}^{s}(1-a)^{s}}{s} \cdot \frac{1}{1-a^{s}}
$$

■ extends meromorphically to all of $\mathbb{C}$ from $\{\operatorname{Re} s>0\}$
■ double pole at $s=0$ and simple poles at

$$
s_{k}=\frac{2 k \pi \dot{\mathrm{i}}}{\log a}, k \in \mathbb{Z}
$$

- $V_{f}(\varepsilon)=-\frac{2}{\log a} \varepsilon(-\log \varepsilon)+\varepsilon H\left(\log _{a} \frac{2 \varepsilon}{x_{0}(1-a)}\right)$, $H:[0,+\infty) \rightarrow \mathbb{R}$ is 1 -periodic and bounded


## Parabolic orbits vs. hyperbolic orbits and fractality

!! parabolic case: oscillations of the coefficients can be smoothened by integration
!! hyperbolic case: the oscillations are mulitiplicative periodic and cannot be smoothened distributionally
(a) parabolic orbits: $\tau_{\varepsilon} \sim \varepsilon^{-\frac{1}{k+1}}, \frac{d}{d \varepsilon} \tau_{\varepsilon} \sim \varepsilon^{-1-\frac{1}{k+1}}$, where $1+\frac{1}{k+1}>1$
(b) hyperbolic orbits: $\tau_{\varepsilon} \sim-\log \varepsilon, \frac{d}{d \varepsilon} \tau_{\varepsilon} \sim-\varepsilon^{-1}$

The consequence:
$(*)$ in the parabolic case no oscillatory coefficients in the distributional expansion (seen in poles of zeta function as no non-real complex dimensions)
$(*)$ in the hyperbolic case oscillatory coefficients remain (seen in poles of zeta function as purely imaginary complex dimensions, similarly as for Cantor sets (LF 2013, LRZ 2017)

## ? who is fractal ?

## Reach zeta functions - joint with S. Winter

$A \subseteq \mathbb{R}^{d}$ compact $|A|=0$, then by [HugLastWeil]:

$$
\left|A_{\varepsilon}\right|=\sum_{i=0}^{d-1} \omega_{d-i} \int_{0}^{\varepsilon} t^{d-i-1} \int_{N(A)} \mathbb{1}\{t<\delta(A, x, u)\} \mu_{i}(A ; d(x, u)) d t
$$

## Reach zeta functions - joint with S. Winter

$A \subseteq \mathbb{R}^{d}$ compact $|A|=0$, then by [HugLastWeil]:

$$
\left|A_{\varepsilon}\right|=\sum_{i=0}^{d-1} \omega_{d-i} \int_{0}^{\varepsilon} t^{d-i-1} \int_{N(A)} \mathbb{1}\{t<\delta(A, x, u)\} \mu_{i}(A ; d(x, u)) d t
$$

$N(A) \subseteq A \times \mathbb{S}^{d-1} \quad$ the generalized normal bundle

## Reach zeta functions - joint with S. Winter

$A \subseteq \mathbb{R}^{d}$ compact $|A|=0$, then by [HugLastWeil]:

$$
\begin{gathered}
\left|A_{\varepsilon}\right|=\sum_{i=0}^{d-1} \omega_{d-i} \int_{0}^{\varepsilon} t^{d-i-1} \int_{N(A)} \mathbb{1}\{t<\delta(A, x, u)\} \mu_{i}(A ; d(x, u)) d t \\
N(A) \subseteq A \times \mathbb{S}^{d-1} \quad \text { the generalized normal bundle } \\
\delta(A, x, u)=\text { the reach at } \quad(x, u) \in N(A)
\end{gathered}
$$

## Reach zeta functions - joint with S. Winter

$A \subseteq \mathbb{R}^{d}$ compact $|A|=0$, then by [HugLastWeil]:

$$
\begin{gathered}
\left|A_{\varepsilon}\right|=\sum_{i=0}^{d-1} \omega_{d-i} \int_{0}^{\varepsilon} t^{d-i-1} \int_{N(A)} \mathbb{1}\{t<\delta(A, x, u)\} \mu_{i}(A ; d(x, u)) d t . \\
N(A) \subseteq A \times \mathbb{S}^{d-1} \quad \text { the generalized normal bundle } \\
\delta(A, x, u)=\text { the reach at }(x, u) \in N(A) \\
\mu_{i}(A ; \cdot)=\text { the i-th support measure on } N(A)
\end{gathered}
$$

## Reach zeta functions - joint with S. Winter

$A \subseteq \mathbb{R}^{d}$ compact $|A|=0$, then by [HugLastWeil]:

$$
\begin{gathered}
\left|A_{\varepsilon}\right|=\sum_{i=0}^{d-1} \omega_{d-i} \int_{0}^{\varepsilon} t^{d-i-1} \int_{N(A)} \mathbb{1}\{t<\delta(A, x, u)\} \mu_{i}(A ; d(x, u)) d t . \\
N(A) \subseteq A \times \mathbb{S}^{d-1} \quad \text { the generalized normal bundle } \\
\delta(A, x, u)=\text { the reach at }(x, u) \in N(A) \\
\mu_{i}(A ; \cdot)=\text { the i-th support measure on } N(A) \\
\zeta_{A, i}(s):=\int_{N(A)}(\delta(A, x, u) \wedge \varepsilon)^{s-i} \mu_{i}(A ; d(x, u))
\end{gathered}
$$

## Reach zeta functions - joint with S. Winter

$A \subseteq \mathbb{R}^{d}$ compact $|A|=0$, then by [HugLastWeil]:

$$
\begin{gathered}
\left|A_{\varepsilon}\right|=\sum_{i=0}^{d-1} \omega_{d-i} \int_{0}^{\varepsilon} t^{d-i-1} \int_{N(A)} \mathbb{1}\{t<\delta(A, x, u)\} \mu_{i}(A ; d(x, u)) d t . \\
N(A) \subseteq A \times \mathbb{S}^{d-1} \quad \text { the generalized normal bundle } \\
\delta(A, x, u)=\text { the reach at } \quad(x, u) \in N(A) \\
\mu_{i}\left(A_{;} \cdot\right)=\text { the i-th support measure on } N(A) \\
\zeta_{A, i}(s):=\int_{N(A)}(\delta(A, x, u) \wedge \varepsilon)^{s-i} \mu_{i}(A ; d(x, u)) \\
\zeta_{A}(s)=\sum_{i=0}^{d-1} \frac{\omega_{d-i}}{s-i} \zeta_{A, i}(s)
\end{gathered}
$$

## Further research directions

- Extending the notion of complex dimensions to include logarithmic and "mixed" singularities points and connecting them with various gauge functions appearing in fractal tube formulas

■ Obtaining corresponding tube formulas and gauge-Minkowski measurability criteria (with M. Lapidus)

- Applying the theory to problems from dynamical systems (with M. Resman, P. Mardesic, M. Klimes, R. Huzak)
■ Connecting the theory with fractal curvatures and support measures (with S. Winter)

雷 D．Hug，G．Last and W．Weil，A local Steiner－type formula for general closed sets and applications，Math．Zeitschrift 246 （2004）， 237－272．
图 M．L．Lapidus and M．van Frankenhuijsen，Fractality，Complex Dimensions，and Zeta Functions：Geometry and Spectra of Fractal Strings，second revised and enlarged edition（of the 2006 edn．）， Springer Monographs in Mathematics，Springer，New York， 2013.
围 M．L．Lapidus，G．Radunović and D．Žubrinić，Fractal Zeta Functions and Fractal Drums：Higher－Dimensional Theory of Complex Dimensions，Springer Monographs in Mathematics，New York， 2017.
固 Mardešić，Radunović，Resman，Fractal zeta functions of orbits of parabolic diffeomorphisms，Analysis and Math．Physics，（2022） 12：114

