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What is a fractal?

Figure: The middle-third Cantor set C .

Figure: The Sierpiński gasket S .
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Fractal dimensions

There are several definitions of fractal dimension.

e.g., similarity dimension, Hausdorff dimension, box counting
dimension, Minkowski dimension, etc.

Figure: dimH C = dimB C = log3 2

Figure: dimH S = dimB S = log2 3 > 1

Mandelbrot: A set is fractal if its fractal dimension exceeds its
topological dimension.

None of the above dimensions give a completely satisfactory
definition of a fractal.
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Some more examples

Figure: The Devil’s staircase - graph of the Cantor function

All of the known fractal dimensions are equal to 1, i.e., to its
topological dimension.
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Some more examples

Figure: Left: The 1/2-square fractal. Right: The 1/3-square fractal.

The Hausdorff and Minkowski dimensions equal to 1 which is also
their topological dimension.
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The Minkowski content and dimension

∅ ≠ A ⊂ RN

δ-neighbourhood of A:

Aδ = {x ∈ RN : d(x ,A) < δ}

r-dimensional Minkowski content of A:

Mr (A) := lim
δ→0+

|Aδ|
δN−r

Minkowski dimension of A:

dimB A = inf{r ∈ R : Mr (A) = 0}
= sup{r ∈ R : Mr (A) = ∞}
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The geometric zeta function [Lapidus, van
Frankenhuijsen, Pomerance, Maier]

fractal string: L = (ℓj)j≥1 ℓj ↘ 0

AL := {ak :=
∑

j≥k ℓj : k ≥ 1}

geometric zeta function: ζL(s) :=
∞∑
j=1

ℓj
s

Example (The Middle-Third Cantor String)

The lengths are (1/3)k each with multiplicity 2k−1, i.e.,

ζL(s) :=
∞∑
j=1

ℓj
s =

∞∑
k=1

2k−1

(
1

3k

)s

=
1

3s − 2
.

The set of complex dimensions:

{
log3 2 +

2πiZ
log 3

}
.



The geometric zeta function [Lapidus, van
Frankenhuijsen, Pomerance, Maier]

fractal string: L = (ℓj)j≥1 ℓj ↘ 0

AL := {ak :=
∑

j≥k ℓj : k ≥ 1}

geometric zeta function: ζL(s) :=
∞∑
j=1

ℓj
s

Example (The Middle-Third Cantor String)

The lengths are (1/3)k each with multiplicity 2k−1, i.e.,

ζL(s) :=
∞∑
j=1

ℓj
s =

∞∑
k=1

2k−1

(
1

3k

)s

=
1

3s − 2
.

The set of complex dimensions:

{
log3 2 +

2πiZ
log 3

}
.



The geometric zeta function [Lapidus, van
Frankenhuijsen, Pomerance, Maier]

fractal string: L = (ℓj)j≥1 ℓj ↘ 0

AL := {ak :=
∑

j≥k ℓj : k ≥ 1}

geometric zeta function: ζL(s) :=
∞∑
j=1

ℓj
s

Example (The Middle-Third Cantor String)

The lengths are (1/3)k each with multiplicity 2k−1, i.e.,

ζL(s) :=
∞∑
j=1

ℓj
s =

∞∑
k=1

2k−1

(
1

3k

)s

=

1

3s − 2
.

The set of complex dimensions:

{
log3 2 +

2πiZ
log 3

}
.



The geometric zeta function [Lapidus, van
Frankenhuijsen, Pomerance, Maier]

fractal string: L = (ℓj)j≥1 ℓj ↘ 0

AL := {ak :=
∑

j≥k ℓj : k ≥ 1}

geometric zeta function: ζL(s) :=
∞∑
j=1

ℓj
s

Example (The Middle-Third Cantor String)

The lengths are (1/3)k each with multiplicity 2k−1, i.e.,

ζL(s) :=
∞∑
j=1

ℓj
s =

∞∑
k=1

2k−1

(
1

3k

)s

=
1

3s − 2
.

The set of complex dimensions:

{
log3 2 +

2πiZ
log 3

}
.



The geometric zeta function [Lapidus, van
Frankenhuijsen, Pomerance, Maier]

fractal string: L = (ℓj)j≥1 ℓj ↘ 0

AL := {ak :=
∑

j≥k ℓj : k ≥ 1}

geometric zeta function: ζL(s) :=
∞∑
j=1

ℓj
s

Example (The Middle-Third Cantor String)

The lengths are (1/3)k each with multiplicity 2k−1, i.e.,

ζL(s) :=
∞∑
j=1

ℓj
s =

∞∑
k=1

2k−1

(
1

3k

)s

=
1

3s − 2
.

The set of complex dimensions:

{
log3 2 +

2πiZ
log 3

}
.



The Distance Zeta Function - generalization to
higher dimensions [LaRaZu]

the distance zeta function of A ⊂ RN :

ζA(s) :=

∫
Aδ

d(x ,A)s−N dx

dependence on δ is inessential

ζAL(s) =
21−s

s
ζL(s) +

2δs

s
, given a large enough δ > 0
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Holomorphicity theorem

Theorem

(a) ζA(s) is holomorphic on {Re s > dimBA}, and

(b) R ∋ s < dimBA ⇒ the integral defining ζA(s) diverges

(c) If ∃D = dimB A < N and MD(A) > 0, then

ζA(x) → +∞ when R ∋ x → D+

Definition (Complex dimensions)

Assume ζA can be meromorphically extended to W ⊆ C.
The set of complex dimensions of A visible in W :

P(ζA,W ) :=
{
ω ∈ W : ω is a pole of ζA

}
.
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Complex dimensions of the Sierpiński gasket

Example

ζA(s; δ) =
6(
√
3)1−s2−s

s(s − 1)(2s − 3)
+ 2π

δs

s
+ 3

δs−1

s − 1

P(ζA)={0, 1} ∪
(
log2 3 +

2π

log 2
iZ
)
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Complex dimensions of the 1/2-square fractal

Example

ζA(s) =
2−s

s(s − 1)(2s − 2)
+

4

s − 1
+

2π

s
, (1)

P(ζA) := P(ζA,C) = {0} ∪
(
1 +

2π

log 2
iZ
)
. (2)
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Complex dimensions of the 1/3-square fractal

Example
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Relative fractal drum (A,Ω)

∅ ≠ A ⊂ RN , Ω ⊂ RN , Lebesgue measurable, i.e., |Ω| < ∞
upper r-dimensional Minkowski content of (A,Ω):

Mr (A,Ω) := lim sup
δ→0+

|Aδ ∩ Ω|
δN−r

upper Minkowski dimension of (A,Ω):

dimB(A,Ω) = inf{r ∈ R : Mr (A,Ω) = 0}

lower Minkowski content and dimension defined via lim inf



Minkowski measurability

dimB(A,Ω) = dimB(A,Ω) ⇒ ∃ dimB(A,Ω)

if ∃D ∈ R such that

0 < MD(A,Ω) = MD(A,Ω) < ∞,

we say (A,Ω) is Minkowski measurable; in that case

D = dimB(A,Ω)

if the above inequalities are not satisfied for D, we call (A,Ω)
Minkowski degenerated



The relative distance zeta function

(A,Ω) RFD in RN , s ∈ C and fix δ > 0

the distance zeta function of (A,Ω):

ζA,Ω(s; δ) :=

∫
Aδ∩Ω

d(x ,A)s−N dx

dependence on δ is not essential

the complex dimensions of (A,Ω) are defined as the poles
of ζA,Ω

take Ω to be an open neighborhood of A in order to recover
the classical ζA
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The relative tube zeta function

(A,Ω) an RFD in RN and fix δ > 0

the tube zeta function of (A,Ω):

ζ̃A,Ω(s; δ) :=

∫ δ

0
ts−N−1|At ∩ Ω| dt

dependence on δ is inessential

analogous holomorphicity theorem holds for ζ̃A,Ω(s; δ)

a functional equation connecting the two zeta functions:

ζA,Ω(s; δ) = δs−N |Aδ ∩ Ω|+ (N − s)ζ̃A,Ω(s; δ)
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Fractal tube formulas for relative fractal drums

An asymptotic (Steiner-type) formula for the tube function

t 7→ |At ∩ Ω| as t → 0+ in terms of ζA,Ω .

Theorem (Simplified pointwise formula with error term)

• α < dimB(A,Ω) < N; ζA,Ω satisfies suitable rational decay
(d-languidity) on the half-plane W := {Re s > α}, then:

|At ∩ Ω| =
∑

ω∈P(ζA,Ω,W)

res

(
tN−s

N−s
ζA,Ω(s), ω

)
+ O(tN−α).

if we allow polynomial growth of ζA,Ω, in general, we get a
tube formula in the sense of Schwartz distributions
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Fractal tube formulas for relative fractal drums

An asymptotic formula for the tube function

t 7→ VA,Ω(t) := |At ∩ Ω| as t → 0+ in terms of ζA,Ω .

Theorem (Case of simple poles)

• In case the the fractal zeta function has only simple poles:

VA,Ω(t) =
∑

ω∈P(ζA,Ω,W)

tN−ω

N−ω
res (ζA,Ω(s), ω) + O(tN−α).

a pole ω of order m generates terms of type

tN−ω(− log t)k−1 for k = 1, . . . ,m

if ω ∈ C \ R then the term tN−ω = tN−Reωe−i Imω log t

introduces oscillations in the order tN−Reω which are
multiplicative periodic with period T = e2π/ Imω
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The Minkowski measurability criterion

Theorem (Minkowski measurability criterion)

• (A,Ω) is such that ∃D := dimB(A,Ω) and D < N
• ζA,Ω is d-languid on a suitable domain W ⊃ {Re s = D}

Then, the following is equivalent:

(a) (A,Ω) is Minkowski measurable.

(b) D is the only pole of ζA,Ω located on the critical line
{Re s = D} and it is simple.

In that case:

MD(A,Ω) =
res(ζA,Ω,D)

N − D
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The Minkowski measurability criterion

(a) ⇒ (b) : from the distributional tube formula and the
Uniqueness theorem for almost periodic distributions due
to Schwartz

(b) ⇒ (a) : a consequence of a Tauberian theorem due to

Wiener and Pitt (conditions can be considerably weakened)

the assumption D < N can be removed by appropriately
embedding the RFD in RN+1



Figure: The Sierpiński gasket

an example of a self-similar fractal spray with a generator
G being an open equilateral triangle and with scaling ratios

r1 = r2 = r3 = 1/2

(A,Ω) = (∂G ,G ) ⊔
⊔3

j=1(rjA, rjΩ)



Fractal tube formula for The Sierpiński gasket

ζA(s; δ) =
6(
√
3)1−s2−s

s(s − 1)(2s − 3)
+ 2π

δs

s
+ 3

δs−1

s − 1

By letting ωk := log2 3 + pki and p := 2π/ log 2 we have that

|At | =
∑

ω∈P(ζA)

res

(
t2−s

2− s
ζA(s; δ), ω

)

= t2−log2 3
6
√
3

log 2

+∞∑
k=−∞

(4
√
3)−ωk t−pki

(2− ωk)(ωk − 1)ωk
+

(
3
√
3

2
+ π

)
t2,

= t2−log2 3H(log2 t) +

(
3
√
3

2
+ π

)
t2

valid pointwise for all t ∈ (0, 1/2
√
3); H : R → R is 1-periodic,

0 < minH = M2−log2 3(A) < M2−log2 3(A) = maxH < +∞
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valid pointwise for all t ∈ (0, 1/2
√
3); H : R → R is 1-periodic,

0 < minH = M2−log2 3(A) < M2−log2 3(A) = maxH < +∞



The fractal nest generated by the a-string

a > 0, aj := j−a, ℓj := j−a − (j + 1)−a, Ω := Ba1(0)

ζAa,Ω(s) =
22−sπ

s − 1

∞∑
j=1

ℓs−1
j (aj + aj+1)



Fractal tube formula for the fractal nest generated
by the a-string

Example

P(ζAa,Ω) ⊆
{
1,

2

a+ 1
,

1

a+ 1

}
∪
{
− m

a+ 1
: m ∈ N

}
a ̸= 1, D := 2

1+a ⇒
|(Aa)t ∩ Ω| = 22−DDπ

(2− D)(D − 1)
aD−1t2−D + 2π

(
2ζ(a)− 1

)
t

+ O
(
t2−

1
a+1
)
, as t → 0+

|(A1)t ∩ Ω| = res

(
t2−s

2− s
ζA1,Ω(s), 1

)
+ o(t)

= 2πt(− log t) + const · t + o(t) as t → 0+

• a pole ω of order m generates terms of type

tN−ω(− log t)k−1 for k = 1, . . . ,m in the fractal tube formula
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Some more examples

Figure: Left: The 1/2-square fractal. Right: The 1/3-square fractal.

The Hausdorff and Minkowski dimensions equal to 1 which is also
their topological dimension.



Fractal tube formula for the 1/2-square fractal

ζA(s) =
2−s

s(s − 1)(2s − 2)
+

4

s − 1
+

2π

s
, (5)

D(ζA) = 1, P(ζA) := P(ζA,C) = {0} ∪
(
1 +

2π

log 2
iZ
)
. (6)

|At | =
∑

ω∈P(ζA)

res

(
t2−s

2− s
ζA(s), ω

)
=

1

4 log 2
t log t−1 + t G

(
log2(4t)

−1
)
+

1 + 2π

2
t2,

(7)

valid for all t ∈ (0, 1/2), where G is a nonconstant 1-periodic
function on R bounded away from zero and ∞.
The 1/2-square fractal is critically fractal in dimension 1.
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Fractal tube formula for the 1/3-square fractal

ζA(s) =
2

s(3s − 2)

(
6

s − 1
+ Z (s)

)
+

4

s − 1
+

2π

s
, (8)

P(ζA) := P(ζA,C) ⊆ {0} ∪
(
log3 2 +

2π

log 3
iZ
)
∪ {1}, (9)

|At | =
∑

ω∈P(ζA)

res

(
t2−s

2− s
ζA, ω

)
= 16t + t2−log3 2G

(
log3(3t)

−1
)
+

12 + π

2
t2.

(10)

valid for all t ∈ (0, 1/
√
2), where G is a nonconstant 1-periodic

function on R bounded away from zero and infinity.
The 1/3-square fractal is subcritically fractal in dimension
ω = log3 2 < dimB A = 1.



Parabolic analytic germs (joint with Mardešić and
Resman)

let f be an attracting germ of a diffeo. on R at a fixed point 0
and let

Of (x0) := {f ◦n(x0) : n ∈ N},
be its orbit by f .

Can one read the formal (or even analytic) class of f from the
“fractality” of its one orbit?
The tube function of the orbit:

Vf := Vf ,x0 : ε 7→ |Of (x0)ε ∩ [0, x0]|



Parabolic analytic germs

f (x) = x − axk+1 + o(xk+1), a > 0, x → 0. (11)

Formal change of variables in the class of formal power series
x + x2R[[x ]] reduces f to a normal form which is a time-one
map of a simple vector field:

f0(x) = Exp

(
− xk+1

1− ρxk
d

dx

)
.id, k ∈ N, ρ ∈ R. (12)

Parabolic germs of the type (12) are called model
diffeomorphisms.

the pair (k , ρ) ∈ N× R is called the formal invariant of f .



Fractal zeta function for the general non-model case

Arbitrary parabolic germ

f (x) = x − axk+1 + o(xk+1) ∈ Diff(R+, 0)

Theorem (B MRR 2020, Complex dimensions for arbitrary
parabolic orbits)

f ∈ Diff(R+, 0), of formal class (k , ρ), k ∈ N, ρ ∈ R.
1 The distance zeta function ζf (s) can be meromorphically

extended to C.
2 In any open right half-plane WM := {Re s > 1− M

k+1}, where
M ∈ N, M > k + 2, given as:



Theorem

For s ∈ WM := {Re s > 1− M
k+1}:

ζf (s) =(1− s)
k∑

m=1

am

s −
(
1− m

k+1

) + (1− s)
(bk+1(x0)

s
+

aρ,k
s2

)

+(1− s)
M−1∑

m=k+2

⌊m
k
⌋+1∑

p=0

(−1)pp! · cm,p(x0)(
s −

(
1− m

k+1

))p+1
+ g(s),

g(s) holomorphic in WM .

∗ the coefficients are real, depending on coeffs. of f and x0, as noted!

∗ higher-order poles correspond to logarithmic terms in the asymptotic

expansion of the tube function due to ρ ̸= 0



Formal class from complex dimensions

Corollary (MRR Formal class of a parabolic germ from
complex dimensions)

Let f be a parabolic germ f (x) = x − axk+1 + o(xk+1), a > 0
from the formal class (k , ρ). Then ζf is meromorphic in C and the
formal class is encoded in two complex dimensions:

1 the simple pole with largest real part, ω1 = 1− 1
k+1 , and its

residue:

Res(ζf (s), ω1) =
a1

k + 1
=

2
1

k+1 a−
1

k+1

k
,

2 the double pole with largest real part, ωk+1 = 0, and the
residue:

Res(s · ζf (s), ωk+1) = aρ,k = 2ρ
k − 1

k
.



Model hyperbolic orbits

fa(x) = ax , 0 < a < 1

Ofa(x0) = {x0an : n ∈ N0}
Lfa = {ℓj = f ◦ja (x0)− f

◦(j+1)
a (x0) = x0(1− a)aj : j ∈ N0}

ζfa(s) =
21−s

s

∞∑
j=0

ℓsj =
21−sx s0(1− a)s

s
· 1

1− as

extends meromorphically to all of C from {Re s > 0}
double pole at s = 0 and simple poles at

sk =
2kπi

log a
, k ∈ Z

Vf (ε) = − 2
log aε(− log ε) + εH

(
loga

2ε
x0(1−a)

)
,

H : [0,+∞) → R is 1-periodic and bounded



Parabolic orbits vs. hyperbolic orbits and fractality

!! parabolic case: oscillations of the coefficients can be
smoothened by integration
!! hyperbolic case: the oscillations are mulitiplicative periodic and
cannot be smoothened distributionally

(a) parabolic orbits: τε ∼ ε−
1

k+1 , d
dετε ∼ ε−1− 1

k+1 , where
1 + 1

k+1 > 1

(b) hyperbolic orbits: τε ∼ − log ε, d
dετε ∼ −ε−1

The consequence:
(∗) in the parabolic case no oscillatory coefficients in the
distributional expansion (seen in poles of zeta function as no
non-real complex dimensions)
(∗) in the hyperbolic case oscillatory coefficients remain (seen in
poles of zeta function as purely imaginary complex dimensions,
similarly as for Cantor sets (LF 2013, LRZ 2017)

? who is fractal ?



Reach zeta functions - joint with S. Winter

A ⊆ Rd compact |A| = 0, then by [HugLastWeil]:

|Aε| =
d−1∑
i=0

ωd−i

∫ ε

0
td−i−1

∫
N(A)

1{t < δ(A, x , u)}µi (A; d(x , u))dt.

N(A) ⊆ A× Sd−1 the generalized normal bundle

δ(A, x , u) = the reach at (x , u) ∈ N(A)

µi (A; ·) = the i-th support measure on N(A)

ζA,i (s) :=

∫
N(A)

(δ(A, x , u) ∧ ε)s−iµi (A; d(x , u)),

ζA(s) =
d−1∑
i=0

ωd−i

s − i
ζA,i (s),
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Further research directions

Extending the notion of complex dimensions to include
logarithmic and “mixed” singularities points and connecting
them with various gauge functions appearing in fractal tube
formulas

Obtaining corresponding tube formulas and gauge-Minkowski
measurability criteria (with M. Lapidus)

Applying the theory to problems from dynamical systems
(with M. Resman, P. Mardesic, M. Klimes, R. Huzak)

Connecting the theory with fractal curvatures and support
measures (with S. Winter)
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