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Parallel sets
For A ⊂ Rd and r > 0 let

Ar :=
{
x ∈ Rd : d(x ,A) < r

}
be the (open) r -parallel set of A.

ǫ

The closed r -parallel set of A is

A≤r :=
{
x ∈ Rd : d(x ,A) ≤ r

}
.

Observe: λd(A≤r ) = λd(Ar ), but Hd−1(∂A≤r ) < Hd−1(∂Ar ) is possible.
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Parallel volume and parallel surface area

Parallel volume VA : (0,∞) → R and parallel surface area SA : (0,∞) → R of A
are defined by

VA(r) := λd(Ar ) and SA(r) := Hd−1(∂Ar ).

Properties of the parallel volume:

VA is continuous and strictly increasing

VA is a Kneser function [Kneser’51] (definition next slide)

VA is differentiable at all radii r > 0 except countably many

(VA)
′
+(r) and (VA)

′
−(r) exist at any r > 0 and

(VA)
′
−(r) ≥ (VA)

′
+(r)

(VA)
′
+(r) is right continuous and (VA)

′
−(r) is left continuous
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Kneser functions

Definition

A function f : (0,∞) → (0,∞) is called Kneser function of order d , if and only if
for b ≥ a > 0 and λ ≥ 1,

f (λb)− f (λa) ≤ λd (f (b)− f (a)) .

A

Aa Ab
Ala

la

Alb

lb

a b

a £ b

l > 1

for f = VA: VA(λb)− VA(λa) ≤ λd (VA(b)− VA(a)) .
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Relations between volume and surface area
s-dim. Minkowski content of F ⊂ Rd : Ms(F ) = lim

ε↘0
εd−sλd(Fε)

Stachó’s Theorem [Stachó ’76]

Let A ⊂ Rd be bounded. Then Md−1(∂Ar ) exists for all r > 0 and

Md−1(∂Ar ) =
1

2

(
(VA)

′
−(r) + (VA)

′
+(r)

)
.

positive boundary of F ⊂ Rd : ∂+F = {x ∈ ∂F : x is in the image of πF}

Theorem [Hug, Last, Weil ’04]

For any bounded set A ⊂ Rd and any r > 0,

(VA)
′
+(r) = Hd−1(∂+Ar ).

Corollary [Rataj, W. ’10]

If (VA)
′(r) exists for some r > 0, then

Md−1(∂A≤r ) = Md−1(∂Ar ) = Hd−1(∂Ar ) = Hd−1(∂+Ar ) = (VA)
′(r).
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Let A ⊂ Rd be bounded. Then Md−1(∂Ar ) exists for all r > 0 and

Md−1(∂Ar ) =
1

2

(
(VA)

′
−(r) + (VA)

′
+(r)

)
.

positive boundary of F ⊂ Rd : ∂+F = {x ∈ ∂F : x is in the image of πF}

Theorem [Hug, Last, Weil ’04]

For any bounded set A ⊂ Rd and any r > 0,

(VA)
′
+(r) = Hd−1(∂+Ar ).

Corollary [Rataj, W. ’10]

If (VA)
′(r) exists for some r > 0, then

Md−1(∂A≤r ) = Md−1(∂Ar ) = Hd−1(∂Ar ) = Hd−1(∂+Ar ) = (VA)
′(r).

S. Winter (KIT) Regularity of parallel volume and surface area 5 / 19



The parallel surface measures
A consequence for parallel surface area SA:

If r0 > 0 is a differentiability point of VA, then SA is continuous at r0, i.e.,

SA(r) → SA(r0) as r → r0.

Let

SA(r , ·) := Hd−1(∂Ar ∩ ·)
be the parallel surface measure of A at distance r > 0.

Theorem A [Rataj,W.’23+]

Let A ⊂ Rd be nonempty and compact and let r0 > 0 be a differentiability point
of VA. Then

SA(r , ·)
w−→ SA(r0, ·) as r → r0.

local parallel volume VA(r , ·) := λd(Ar ∩ ·): for any r0 > 0,

VA(r , ·)
w−→ VA(r0, ·) as r → r0.

curvature measures Ck(Ar , ·): if r0 > 0 is a regular value of dA, then

Ck(Ar , ·)
w−→ Ck(Ar0 , ·) as r → r0. [W.’15, RWZ’23+]
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Critical points and critical values

Let A ⊂ Rd be compact.

distance function of A:

dA : Rd → [0,∞), x 7→ inf{|x − y | : y ∈ A}

x ∈ Ac is a critical point of dA, if x is contained in
the convex hull of its nearest points in A.

r > 0 is called a regular value of A, if A has no
critical point at distance r ; otherwise r is called
critical value. Let cv(A) be the set of critical values
of A.

For regular r > 0, the closed complement of Ar ,
(Ar )c has positive reach, cf. [Fu 85]. (In this case,
curvature measures of Ar are defined.)

x

F

For A ⊂ Rd , d ≤ 3 Lebesgue almost all r are regular [Fu ’85], this is not true
in dimension d ≥ 4 [Ferry ’75]. (More precisely, H(d−1)/2(cv(A)) = 0.)

Unp (A) := {x ∈ Rd : x has a unique nearest point in A}
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Metrically associated sets

Definition

Let A ⊂ Rd be compact. X ⊂ Rd is called metrically associated with A, if for any
point x ∈ X there exists a point a ∈ A so that

d(x , a) = dA(x) and

]x , a[⊂ X .

Examples:

Ar is metrically associated with A (for any r > 0).

If πA is the metric projection to A and B ⊂ A, then π−1
A (B) is metrically

associated with A.

Ar ∩ π−1
A (B) is metrically associated with A

If ΠA : Unp (A) \ A → N(A), x 7→
(
πA(x),

x−πA(x)
|x−πA(x)|

)
is the generalized metric

projection of A and β ⊂ ∂A× Sd−1, then Π−1
A (β) is metrically associated

with A.

Ar ∩ Π−1
A (β) is metrically associated with A
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Metrically associated sets

Lemma [Stachó ’76]

Let A,X ⊂ Rd and let X be measurable and metrically associated with A. Then
the function t 7→ f (t) := λd(At ∩ X ), t > 0 has the Kneser property.

For any compact A ⊂ Rd and any Borel set β ⊂ N(A),

r 7→ VA,β(r) := λd(Ar ∩ Π−1
A (β)), r > 0

is a Kneser function.

Proposition [W. ’19], [Rataj, W. ’23+]

Let A ⊂ Rd be nonempty and compact and let β ⊂ N(A) be some Borel set.
Then, for any r > 0,

(VA,β)
′
+(r) = Hd−1(∂+Ar ∩ Π−1

A (β)) ≤ Hd−1(∂Ar ∩ Π−1
A (β))(= SA(r ,Π

−1
A (β))).

Moreover, if VA is differentiable at r , then ‘≤’ can be replaced by ‘=’.

Note: If VA is differentiable at some r > 0, then VA,β is for any β ⊂ N(A).
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Idea of Proof for Theorem A

Lemma [Rataj, W. ’23+]

Let A ⊂ Rd be nonempty and compact and let r0 > 0 be a differentiability point
of r 7→ VA(r). Then for any Borel set β ⊂ N(A)

lim
r→r0

SA(r ,Π
−1
A (β)) = SA(r0,Π

−1
A (β)).

Fix R > r0. Then the family of measures M := {SA(r , ·) : r ∈ (0,R]} is tight.

By Prokhorov’s Theorem, any sequence of measures in M has a converging
subsequence. Let (ri )i∈N be a sequence in (0,R] such that ri → r0 as i → ∞
and such that for some measure µ

µi := SA(ri , ·)
w−→ µ, as i → ∞.

It suffices to show that µ = µ0 := SA(r0, ·).
One has sptµ ⊂ ∂Ar0 (and sptµ ⊂ ∂Ar0). Therefore, it is enough to show
µ(F ) = µ0(F ) for any relatively closed set F ⊂ ∂Ar0 ∩Unp (A).

(This implies µ(· ∩Unp (A)) = µ0(· ∩Unp (A)). Together with
µ0(Unp (A)c) = 0 and µi (Rd) → µ0(Rd) this shows µ = µ0.)
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Characterization of differentiability of VA

Theorem B [Hug, Santilli ’22, Rataj, W. ’23+]

Let A ⊂ Rd be compact and r > 0. Then the following assertions are equivalent:

(i) the volume function VA is differentiable at r ;

(ii) Hd−1(∂Ar \ ∂+Ar ) = 0;

(iii) Hd−1(∂Ar \Unp (A)) = 0 and Hd−1(∂Ar ∩Unp (A) \ ∂+Ar ) = 0;

(iv) Hd−1(∂Ar \Unp (A)) = 0;

(v) Hd−1(∂Ar ∩ crit(A)) = 0.

Remark:

(i)⇔(v) implies: If VA is not differentiable at r > 0, then r is a critical value
of the distance function dA. (crit(A) is the set of critical points.)

These characterizations of differentiability of VA can also be deduced from
the results in [Hug, Santilli ’22], not only for Euclidean parallel sets but also
for parallel sets w.r.t. other Minkowski norms.
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Ideas on the proof:

(i) ⇔ (ii): follows from statements on slide 5 and the fact that
(VA)

′
−(r) > (VA)

′
+(r) at non-differentiable r ;

(ii) ⇔ (iii): follows from the disjoint decomposition

∂Ar \ ∂+Ar = (∂Ar \ ∂+Ar ) \Unp (A) ∪ (∂Ar \ ∂+Ar ) ∩Unp (A)

and ∂+Ar ⊂ Unp (A);

(iii) ⇔ (iv): follows from Hd−1(∂Ar ∩ (Unp (A) \ ∂+Ar )) = 0 for all r .

(iv) ⇔ (v): follows from Hd−1(∂Ar ∩ (reg(A) \Unp (A))) = 0 for all r .
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Relation with critical values

Lemma

For any A ⊂ Rd compact and r > 0,

∂Ar ∩ ∂+Ar ⊂ ∂Ar ∩Unp (A) ⊂ ∂Ar ∩ reg(A).

Further, for any r > 0, both inclusions are equalities up to an Hd−1-null set, i.e.,

Hd−1(∂Ar ∩ (Unp (A) \ ∂+Ar )) = 0, (1)

Hd−1(∂Ar ∩ (reg(A) \Unp (A))) = 0. (2)

Idea of proof: The set inclusions are easy (a point outside of A having a unique
nearest neighbour in A is regular).
For a regular point x ∈ ∂Ar ∩ reg(A), the boundary ∂Ar is a Lipschitz surface in
some neighbourhood of x (see [Fu ’85]). Hence, by Rademacher’s theorem, the
outer normal n(y) is differentiable Hd−1-a.e. on this surface, and any point
y ∈ ∂Ar where n(y) is differentiable belongs to ∂+Ar . These Lipschitz surfaces
cover the set ∂Ar ∩ reg(A).
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Characterization of differentiability of VA

For a compact set A ⊂ Rd (d ∈ N), let

NA := {r > 0 : VA is not differentiable at r}

be the set of non-differentiability points of the volume function VA.

Properties of NA:

countable,

bounded (subset of (0,diam (A)),

not necessarily closed.

Question: Which bounded, countable subsets N of (0,∞) occur as sets NA of
non-differentiability points of some compact set A ⊂ Rd?
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Characterization of non-differentiability sets for d = 1

Theorem C [Rataj, W. ’23+]

Let N ⊂ (0,∞). Then there exists some compact set A ⊂ R such that NA = N if
and only if

∑
s∈N s < ∞.

Note that the condition
∑

s∈N s < ∞ implies that N is countable and bounded
and moreover, that the set N can only accumulate at 0.

Idea of proof: The set conv(A) \ A consists of at most countably many bounded
open intervals. We denote by ℓ1, ℓ2, . . . the lengths of these intervals in
non-increasing order ((ℓj)j∈N is called fractal string associated with A).
VA is not differentiable at some r > 0 if and only if 2r appears in the fractal
string. Hence

NA = {r ∈ (0,∞) : 2r = ℓj for some j ∈ N}.

This implies
∑

s∈N s = 2
∑

i∈N ℓi < ∞.

This shows that the condition
∑

s∈N s < ∞ is necessary. For the sufficiency we
construct an example for each such N.
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Characterization of non-differentiability sets for d = 2
For a compact set K ⊂ R and α > 0, the degree-α gap sum of K is

Gα(K ) :=
∑
j

ℓαj ,

where (ℓj) is the fractal string associated with K (lengths of complementary
intervals in non-increasing order).

Theorem D [Rataj, W. ’22+]

(i) Let ε > 0 and N ⊂ [ε,∞) be a bounded countable set. Then N = NA for
some compact set A ⊂ R2 if and only if λ1(N) = 0 and G1/2(N) < ∞.

(ii) Let N ⊂ (0,∞) be a bounded countable set. Then N = NA for some
compact set A ⊂ R2 if and only if λ1(N) = 0 and∫ ∞

0

G1/2(N ∩ [r ,∞))
√
r dr < ∞.

The condition in (i) implies M1/2
(N) = 0 (and thus dimMN ≤ 1

2 );

the condition in (ii) only implies M4/5
(N) = 0 (and thus dimMN ≤ 4

5 ).
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Some ideas from the proof of Theorem D
Necessity follows from a result by Rataj and Zaj́ıček on critical values of dA:

Theorem [Rataj, Zaj́ıček ’20]

(i) Let ε > 0 and C ⊂ [ε,∞). Then C ⊂ cv(A) for some compact set A ⊂ R2 if
and only if λ1(C ) = 0 and G1/2(C ) < ∞.

(ii) Let C ⊂ (0,∞). Then C ⊂ cv(A) for some compact set A ⊂ R2 if and only if
λ1(C ) = 0 and ∫ ∞

0

G1/2(C ∩ [r ,∞))
√
r dr < ∞.

If NA = N for some compact set A ⊂ R2, then N ⊂ cv(A). (Recall that
NA ⊂ cv(A), and the fact that cv(A) is closed.)

For sufficiency we construct an example for each given set N satisfying the
conditions in (i) and (ii), respectively.

Given s ∈ (0,∞), how to construct a set with non-differentiability point at s?

The potato-sack problem (Problem 10.1 from The Scottish Book):
Given a sequence of compact, convex sets (potatos) in Rd with uniformly
bounded diameter and finite total volume, do they fit in a sack of finite size?

(first solution: [Kosiński ’57])
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Given s ∈ (0,∞), how to construct a set with non-differentiability point at s?

The potato-sack problem (Problem 10.1 from The Scottish Book):
Given a sequence of compact, convex sets (potatos) in Rd with uniformly
bounded diameter and finite total volume, do they fit in a sack of finite size?

(first solution: [Kosiński ’57])
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Examples of non-differentiability sets for d = 2

For q ∈ (0, 1/2) let Fq ⊂ R be the self-similar set generated by the two
mappings x 7→ qx and x 7→ qx + (1− q).

Observe that {0, 1} ⊂ Fq ⊂ [0, 1] and dimM Fq = log 2
log(1/q) < 1.

Let Eq be the set of all endpoints of intervals of [0, 1] \ Fq.

Then E q = Fq, λ1(Fq) = 0 and for any α > 0,

Gα(E q) = Gα(Fq) = (1− 2q)α
∞∑
k=0

(2qα)k .

For α = 1/2, the gap sum is finite if and only if q ∈ (0, 1/4).

For any ε > 0 and q ∈ (0, 1/4), the set Nq := ε+ Eq satisfies the condition
in (i) of Theorem D, and therefore it is a valid set non-differentiability points.

Also the set Eq itself is valid for each q ∈ (0, 1/4), since condition (ii) is
satisfied for N = Eq.

This shows: sets of non-differentiability points may have any Minkowski dimension
between 0 and 1/2. In fact, any value up to 4/5 is also possible (but not sets of
the above type).
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Non-differentiability sets for d ≥ 3

Proposition [Rataj, W. ’23+]

Let d ∈ N and N ⊂ (0,∞) be such that
∑

s∈N sd < ∞. Then there exists some

compact set A ⊂ Rd such that NA = N.
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